melt spinning
Recently Published Documents


TOTAL DOCUMENTS

2086
(FIVE YEARS 293)

H-INDEX

56
(FIVE YEARS 8)

JOM ◽  
2022 ◽  
Author(s):  
Andrew B. Kustas ◽  
Donald F. Susan ◽  
Todd Monson

AbstractSoft-magnetic alloys exhibit exceptional functional properties that are beneficial for a variety of electromagnetic applications. These alloys are conventionally manufactured into sheet or bar forms using well-established insgot metallurgy practices that involve hot- and cold-working steps. However, recent developments in process metallurgy have unlocked opportunities to directly produce bulk soft-magnetic alloys with improved, and often tailorable, structure–property relationships that are unachievable conventionally. The emergence of unconventional manufacturing routes for soft-magnetic alloys is largely motivated by the need to improve the energy efficiency of electromagnetic devices. In this review, literature that details emerging manufacturing approaches for soft-magnetic alloys is overviewed. This review covers (1) severe plastic deformation, (2) recent advances in melt spinning, (3) powder-based methods, and (4) additive manufacturing. These methods are discussed in comparison with conventional rolling and bar processing. Perspectives and recommended future research directions are also discussed.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 411
Author(s):  
Xiao Shen ◽  
Shuiqing Liu ◽  
Xin Wang ◽  
Chunxiang Cui ◽  
Pan Gong ◽  
...  

The mechanical properties of iron-rich Al–Si alloy is limited by the existence of plenty of the iron-rich phase (β-Al5FeSi), whose unfavorable morphology not only splits the matrix but also causes both stress concentration and interface mismatch with the Al matrix. The effect of the cooling rate on the tensile properties of Fe-rich Al–Si alloy was studied by the melt spinning method at different rotating speeds. At the traditional casting cooling rate of ~10 K/s, the size of the needle-like β-Al5FeSi phase is about 80 μm. In contrast, the size of the β-Al5FeSi phase is reduced to 500 nm and the morphology changes to a granular morphology with the high cooling rate of ~104 K/s. With the increase of the cooling rate, the morphology of the β-Al5FeSi phase is optimized, meanwhile the tensile properties of Fe-rich Al–Si alloy are greatly improved. The improved tensile properties of the Fe-rich Al-Si alloy is attributed to the combination of Fe-rich reinforced particles and the granular silicon phase provided by the high cooling rate of the melt spinning method.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 200
Author(s):  
Figen Selli ◽  
Rudolf Hufenus ◽  
Ali Gooneie ◽  
Umit Halis Erdoğan ◽  
Edith Perret

Poly(hydroxybutyrate-co-3-hexanoate) (PHBH) is a biodegradable thermoplastic polyester with the potential to be used in textile and medical applications. We have aimed at developing an upscalable melt-spinning method to produce fine biodegradable PHBH filaments without the use of an ice water bath or offline drawing techniques. We have evaluated the effect of different polymer grades (mol% 3-hydroxy hexanoate, molecular weight etc.) and production parameters on the tensile properties of melt-spun filaments. PHBH monofilaments (diameter < 130 µm) have been successfully melt-spun and online drawn from three different polymer grades. We report thermal and rheological properties of the polymer grades as well as morphological, thermal, mechanical, and structural properties of the melt-spun filaments thereof. Tensile strengths up to 291 MPa have been achieved. Differences in tensile performance have been correlated to structural differences with wide-angle X-ray diffraction and small-angle X-ray scattering. The measurements obtained have revealed that a synergetic interaction of a highly oriented non-crystalline mesophase with highly oriented α-crystals leads to increased tensile strength. Additionally, the effect of aging on the structure and tensile performance has been investigated.


2022 ◽  
pp. 004051752110683
Author(s):  
Zhi Chen ◽  
Huizhen Ke ◽  
Jian Wang ◽  
Yonggui Li ◽  
Hao Jia ◽  
...  

There has been much concern about germanium because of its special atomic nuclear structure to generate negative electrons and far-infrared ray. In this study, novel germanium-polyamide6 fibers were prepared by using micro–nano structured germanium particles as a functional component via melt spinning. The effects of germanium concentration on the morphology, mechanical, negative air ion-releasing, and far-infrared radiation properties of the germanium-polyamide6 fibers were systematically investigated. Besides, the antibacterial activity and mechanism of the fibers against Staphylococcus aureus and Escherichia coli were also discussed. Even though the added germanium particles negatively affected the mechanical performance of the fiber, they were distributed well in the polyamide6 substrate when the concentration was increased from 2% to 6%. Increasing the temperature and pressure induced the germanium-polyamide6 fibers to produce more negative air ions and high far-infrared emissivity. The negative air ion-releasing property of the fiber led to antibacterial performance against S. aureus with more than 99% antibacterial rate. The results confirmed the great application potential of germanium in healthcare, medical, home, and apparel textiles.


10.6036/10098 ◽  
2022 ◽  
Vol 97 (1) ◽  
pp. 53-57
Author(s):  
JUAN MANUEL PRADO LAZARO ◽  
JOSE ANGEL RAMOS BANDERAS ◽  
ISRAEL AGUILERA NAVARRETE ◽  
JAIME ALEJANDRO VERDUZCO MARTINEZ ◽  
ROCIO MARICELA OCHOA PALACIOS

In this work, the Zn22Al4Ag alloy was synthesized by melting in a muffle furnace.The alloy obtained was characterized by Scanning Electron Microscopy Energy Dispersive Spectroscopy and was analyzed by the X-Ray Diffraction technique, where the crystallinity of the material was verified before and after being processed. Likewise, the Differential Scanning Calorimetry technique was used to obtain the temperatures where phase transformations occurin the alloy. These results were fed to the Termocalc®, software to numerically obtain the phase diagram of the alloy. Subsequently, a section of the ingot was taken to the rapid solidification process by rotating drum. The process variables were manipulated: jet stability, nozzle diameter, distance from the nozzle surface to the cooling medium, the delay time of the molten material in the crucible, speed of the rotating drum and jet angle, until obtaining a microwire with a diameter of ~ 160µm. Finally, it was determined that inadequate control of these parameters can result in powders, flakes or blockage of the crucible outlet. Potentially uses within the micro and nanoworld as an analogy to structural elements and electrical conductors, in addition to its current use as a coating anti-corrosive. Key Words: ZnAlAg alloy, Melt spinning process, Microwire, DSC analysis, Thermodynamic simulation


2022 ◽  
Vol 145 ◽  
pp. 111559
Author(s):  
Te Yao ◽  
Pei Gong ◽  
Hua Li ◽  
Zongying Wei ◽  
Xiao Li ◽  
...  

2022 ◽  
pp. 29-65
Author(s):  
Mukesh Kumar Singh ◽  
Annika Singh
Keyword(s):  

2022 ◽  
pp. 131693
Author(s):  
Kai Wang ◽  
Qingnan Meng ◽  
Kang Zhao ◽  
Xin Li ◽  
Qian Bai ◽  
...  

2022 ◽  
Vol 1213 (1) ◽  
pp. 012009
Author(s):  
N Sitnikov ◽  
A Shelyakov ◽  
I Zaletova

Abstract The study of the effect of electropulse treatment with a variable duration on the crystallization processes and the structure of a amorphous TiNiCu alloy with 25 at.% Cu in comparison with isothermal annealing and heating at a constant speed was carried out. The alloy was fabricated by rapid-quenching from the liquid state (melt spinning technique) at the cooling rate of the melt of about 106 °C/s in the form of a ribbon with a thickness of 28 μm with a surface crystal layer with a thickness of about 2-3 μm. To remove the crystal layer, the method of double-sided electrochemical polishing was used. The studies were carried out by methods of differential scanning calorimetry, metallography and scanning electron microscopy. It was established that the formation of the crystalline phase in the electropulse treatment of the amorphous ribbon occurs from the surface to the inner part due to the predominant formation and growth of columnar crystals with subsequent nucleation and growth of crystals in the rest of the ribbon.


Sign in / Sign up

Export Citation Format

Share Document