Crystal Structure Studies on Arylsulphonamides and N-Chloro-Arylsulphonamides

2007 ◽  
Vol 62 (7-8) ◽  
pp. 417-424
Author(s):  
Basavalinganadoddy Thimme Gowda ◽  
Sabine Foro ◽  
Jozef Kožíšek ◽  
Hartmut Fuess ◽  

The effect of ring substitution and N-chlorination on the molecular geometry of arylsulphonamides and N-chloro-arylsulphonamides have been studied by determining the crystal structures of 2-methyl- 4-chloro-benzenesulphonamide (2M4CBSA) and the sodium salt of N-chloro-2-methyl-4-chlorobenzenesulphonamide (NaNC2M4CBSA). The results are analyzed along with the crystal structures of benzenesulphonamide, 4-methyl-benzenesulphonamide and 4-chloro-benzenesulphonamide. The crystal structure of NaNC2M4CBSA has also been compared and correlated with the crystal structures of the above compounds and those of the sodium salts of N-chloro-benzenesulphonamide, Nchloro- 4-methyl-benzenesulphonamide, N-chloro-4-chloro-benzenesulphonamide and N-chloro-2,4- dichloro-benzenesulphonamide. The crystal system, space group, formula units and lattice constants in Å of the new structures are: 2M4CBSA: triclinic, P1, Z = 4, a = 7.9030(10), b = 8.6890(10), c = 13.272(2), α = 100.680(10)°, β = 98.500(10)°, γ = 90.050(10)°; NaNC2M4CBSA: monoclinic, C2/c, Z =4, a = 10.9690(10), b = 6.7384(6), c = 30.438(2), β = 98.442(7)°. The structure of 2M4CBSA is quite complex with four molecules in its asymmetric unit. The S-N bond length slightly decreases with substitution of electron-withdrawing groups, while the effect is more pronounced with disubstitution. The structure of NaNC2M4CBSA confirms that there is no interaction between nitrogen and sodium, and Na+ is attached to one of the sulphonyl oxygen atoms. The Na+ coordination sphere involves oxygen atoms from water moleculess of crystallization and neighbouring molecules. The S-N distance of 1.586 Å for the compound is consistent with a S-N double bond. The molecules are held together by hydrogen bonds with distances varying from 2.12 to 2.85 Å.

2006 ◽  
Vol 61 (10-11) ◽  
pp. 588-594 ◽  
Author(s):  
Basavalinganadoddy Thimme Gowda ◽  
Jozef Kožíšek ◽  
Hartmut Fuess

TMPAThe effect of substitutions in the ring and in the side chain on the crystal structure of N- (2,4,6-trimethylphenyl)-methyl/chloro-acetamides of the configuration 2,4,6-(CH3)3C6H2NH-COCH3− yXy (X = CH3 or Cl and y = 0,1, 2) has been studied by determining the crystal structures of N-(2,4,6-trimethylphenyl)-acetamide, 2,4,6-(CH3)3C6H2NH-CO-CH3 (); N-(2,4,6- trimethylphenyl)-2-methylacetamide, 2,4,6-(CH3)3C6H2NH-CO-CH2-CH3 (TMPMA); N-(2,4,6- trimethylphenyl)-2,2-dimethylacetamide, 2,4,6-(CH3)3C6H2NH-CO-CH(CH3)2 (TMPDMA) and N-(2,4,6-trimethylphenyl)-2,2-dichloroacetamide, 2,4,6-(CH3)3C6H2NH-CO-CHCl2 (TMPDCA). The crystallographic system, space group, formula units and lattice constants in Å are: TMPA: monoclinic, Pn, Z = 2, a = 8.142(3), b = 8.469(3), c = 8.223(3), β = 113.61(2)◦; TMPMA: monoclinic, P21/n, Z = 8, a = 9.103(1), b = 15.812(2), c = 16.4787(19), α = 89.974(10)◦, β = 96.951(10)◦, γ =89.967(10)◦; TMPDMA: monoclinic, P21/c, Z = 4, a =4.757(1), b= 24.644(4), c =10.785(2), β = 99.647(17)◦; TMPDCA: triclinic, P¯1, Z = 2, a = 4.652(1), b = 11.006(1), c = 12.369(1), α = 82.521(7)◦, β = 83.09(1)◦, γ = 79.84(1)◦. The results are analyzed along with the structural data of N-phenylacetamide, C6H5NH-CO-CH3; N-(2,4,6-trimethylphenyl)-2-chloroacetamide, 2,4,6-(CH3)3C6H2NH-CO-CH2Cl; N-(2,4,6-trichlorophenyl)-acetamide, 2,4,6-Cl3C6H2NH-COCH3; N-(2,4,6-trichlorophenyl)-2-chloroacetamide, 2,4,6-Cl3C6H2NH-CO-CH2Cl; N-(2,4,6-trichlorophenyl)- 2,2-dichloroacetamide, 2,4,6-Cl3C6H2NH-CO-CHCl2 and N-(2,4,6-trichlorophenyl)- 2,2,2-trichloroacetamide, 2,4,6-Cl3C6H2NH-CO-CCl3. TMPA, TMPMA and TMPDCA have one molecule each in their asymmetric units, while TMPDMA has two molecules in its asymmetric unit. Changes in the mean ring distances are smaller on substitution as the effect has to be transmitted through the peptide linkage. The comparison of the other bond parameters reveal that there are significant changes in them on substitution.


IUCrData ◽  
2016 ◽  
Vol 1 (4) ◽  
Author(s):  
A. Benosmane ◽  
D. A. Rouag ◽  
A. Mili ◽  
H. Merazig ◽  
M. A. Benaouida

The crystal structure of the title compound, C16H13N3O3S, shows that the two independent zwitterions in the asymmetric unit are approximately planar. Intramolecular N—H...O hydrogen bonds occur and the aromatic rings have atransconfiguration with respect to the azo double bond. In the crystal, the molecules are linkedviaN—H...O hydrogen bonds and π–π stacking, forming a three-dimensional supramolecular network, the π–π stacking interactions between adjacent benzene and naphthalene rings having centroid-to-centroid distances of 3.764 (3) and 3.775 (3) Å.


IUCrData ◽  
2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Ioannis Tiritiris ◽  
Willi Kantlehner

The asymmetric unit of the title salt, 2C5H12N3O+·SO42−, comprises two cations and one sulfate ion. In both cations, the C, N and O atoms of the morpholine rings are disordered over two sets of sites, with refined occupancies of 0.849 (3):0.151 (3) for cation I and 0.684 (4):0.316 (4) for cation II. The C—N bond lengths in both central C3N units of the carboxamidinium ions range between 1.253 (12) and 1.362 (5) Å, indicating a degree of double-bond character. The central C atoms are bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charges are delocalized in both CN3planes. The crystal structure is stabilized by a three-dimensional network of N—H...O hydrogen bonds between the cations and the sulfate ion. Scheme tiny font, charges and delocalized bonds almost invisible


2014 ◽  
Vol 70 (9) ◽  
pp. o987-o988 ◽  
Author(s):  
N. R. Sajitha ◽  
M. Sithambaresan ◽  
M. R. Prathapachandra Kurup

The asymmetric unit of the title compound, C21H25N3O2S·0.5C2H3N, contains two independent molecules with almost similar structural properties along with a solvent molecule of acetonitrile. The compound exists in theEconformation with respect to the azomethine C=N double bond. The hydrazinecarbothioamide moieties in both independent molecules are almost planar [maximum deviations of 0.013 (2) and 0.007 (2) Å]. The molecular conformation is stabilized in each case by an intramolecular N—H...N hydrogen bond. In the crystal, pairs of N—H...S hydrogen bonds link each of the independent molecules into inversion dimers. The dimers are interconnected by means of three C—H...π interactions.


2015 ◽  
Vol 71 (10) ◽  
pp. 1117-1120 ◽  
Author(s):  
Dmitrijs Stepanovs ◽  
Daniels Posevins ◽  
Maris Turks

The title compounds consist of a bornane skeleton with attached acetamide, C12H21NO (±)-(1) {systematic name: (±)-N-[(1RS,2RS,4RS)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl]acetamide}, and chloroacetamide, C12H20ClNO (±)-(2) {systematic name: (±)-2-chloro-N-[(1RS,2RS,4RS)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl]acetamide}, functionalities to the 2-exo-position. The crystal structure of the first monoclinic polymorph of (±)-(1) has been reported previously [Unget al.(2014).Monatsh. Chem.145, 983–992]. Compound (±)-(1) crystallizes in the space groupP21/nwith two independent molecules in the asymmetric unit, in contrast to the above-mentioned polymorph which crystallized in the space groupC2/cwith one molecule in the asymmetric unit. In the title compounds, the bicyclic bornane moieties have normal geometries. In the crystals of both compounds, molecules are linked by N—H...O hydrogen bonds, reinforced by C—H...O contacts, formingtrans-amide chains propagating along thea-axis direction. In the case of compound (±)-(1), neighbouring chains are linked by further C—H...O contacts, forming double-chain ribbons along [100].


2017 ◽  
Vol 73 (7) ◽  
pp. 575-581 ◽  
Author(s):  
Philipp Kramer ◽  
Michael Bolte

Kryptoracemates are racemic compounds (pairs of enantiomers) that crystallize in Sohnke space groups (space groups that contain neither inversion centres nor mirror or glide planes nor rotoinversion axes). Thus, the two symmetry-independent molecules cannot be transformed into one another by any symmetry element present in the crystal structure. Usually, the conformation of the two enantiomers is rather similar if not identical. Sometimes, the two enantiomers are related by a pseudosymmetry element, which is often a pseudocentre of inversion, because inversion symmetry is thought to be favourable for crystal packing. We obtained crystals of two kryptoracemates of two very similar compounds differing in just one residue, namely rac-N-[(1S,2R,3S)-2-methyl-3-(5-methylfuran-2-yl)-1-phenyl-3-(pivalamido)propyl]benzamide, C27H32N2O3, (I), and rac-N-[(1S,2S,3R)-2-methyl-3-(5-methylfuran-2-yl)-1-phenyl-3-(propionamido)propyl]benzamide dichloromethane hemisolvate, C25H28N2O3·0.5CH2Cl2, (II). The crystals of both compounds contain both enantiomers of these chiral molecules. However, since the space groups [P212121 for (I) and P1 for (II)] contain neither inversion centres nor mirror or glide planes nor rotoinversion axes, there are both enantiomers in the asymmetric unit, which is a rather uncommon phenomenon. In addition, it is remarkable that (II) contains two pairs of enantiomers in the asymmetric unit. In the crystal, molecules are connected by intermolecular N—H...O hydrogen bonds to form chains or layered structures.


2017 ◽  
Vol 73 (12) ◽  
pp. 1806-1811 ◽  
Author(s):  
Paola Paoli ◽  
Eleonora Macedi ◽  
Patrizia Rossi ◽  
Luca Giorgi ◽  
Mauro Formica ◽  
...  

The title compound, {[Ba{Co(H-2L1)}(ClO4)(H2O)]ClO4}n,L1 =4,10-bis[(3-hydroxy-4-pyron-2-yl)methyl]-1,7-dimethyl-1,4,7,10-tetraazacyclododecane, is a one-dimensional coordination polymer. The asymmetric unit consists of a {Ba[Co(H–2L1)](ClO4)(H2O)}+cationic fragment and a non-coordinating ClO4−anion. In the neutral [Co(H–2L1)] moiety, the cobalt ion is hexacoordinated in a trigonal–prismatic fashion by the surrounding N4O2donor set. The Ba2+ion is nine-coordinated and exhibits a distorted [BaO9] monocapped square-antiprismatic geometry, the six oxygen atoms coming from three distinct [Co(H–2L1)] moieties, while the remaining three vertices are occupied by the oxygen atoms of a bidentate perchlorate anion and a water molecule. A barium–μ2-oxygen motif develops along theaaxis, connecting symmetry-related dinuclear BaII–CoIIcationic fragments in a wave-like chain, forming a one-dimensional metal coordination polymer. Non-coordinating ClO4−anions are located in the space between the chains. Weak C—H...O hydrogen bonds involving both coordinating and non-coordinating perchlorate anions build the whole crystal architecture. To our knowledge, this is the first example of a macrocyclic ligand forming a BaII-based one-dimensional coordination polymer, containing CoIIions surrounded by a N4O2donor set.


2012 ◽  
Vol 68 (6) ◽  
pp. o1586-o1586 ◽  
Author(s):  
Jun-yi Hu ◽  
Gang-gang Wu ◽  
Ying-qian Xu ◽  
Guo-yong Xiao ◽  
Peng Lei

There are two independent molecules in the asymmetric unit of the title compound, C30H44O5. They comprise a triterpenoid skeleton of five six-membered rings and a five-membered lactone ring. The five six-membered rings are all trans-fused. In both independent molecules the D rings adopt a slightly distorted half-chair conformation due the presence of the lactone ring while the other four six-membered rings all adopt chair conformations. The characteristic carbon–carbon double bond of the oleanoic skeleton is absent. Intermolecular O—H...O hydrogen bonds between the hydroxy and carbonyl groups occur in the crystal structure.


2015 ◽  
Vol 71 (10) ◽  
pp. 1226-1229
Author(s):  
Kazuma Gotoh ◽  
Yuki Tahara ◽  
Hiroyuki Ishida

Crystal structures of the title compound (systematic name: morpholin-4-ium 2,5-dibromo-4-hydroxy-3,6-dioxocyclohexa-1,4-dien-1-olate), C4H10NO+·C6HBr2O4−, were determined at three temperatures,viz.130, 145 and 180 K. The asymmetric unit comprises one morpholinium cation and two halves of crystallographically independent bromanilate monoanions, which are located on inversion centres. The conformations of the two independent bromanilate anions are different from each other with respect to the O—H orientation. In the crystal, the two different anions are linked alternately into a chain along [211] through a short O—H...O hydrogen bond, in which the H atom is disordered over two positions. The refined site-occupancy ratios, which are almost constant in the temperature range studied, are 0.49 (3):0.51 (3), 0.52 (3):0.48 (3) and 0.50 (3):0.50 (3), respectively, at 130, 145 and 180 K, and no significant difference in the molecular geometry and the molecular packing is observed at the three temperatures. The morpholinium cation links adjacent chains of anionsviaN—H...O hydrogen bonds, forming a sheet structure parallel to (-111).


Author(s):  
Eric Bosch

The asymmetric unit of the co-crystal salt 2-amino-6-bromopyridinium 2,3,5,6-tetrafluorobenzoate, C5H6BrN2 +·C7HF4O2 −, contains one pyridinium cation and one benzoate anion. In the crystal, the aminopyridinium cationic unit forms two hydrogen bonds to the benzoate oxygen atoms in an R 2 2(8) motif. Two pyridinium benzoate units are hydrogen bonded through self-complementary hydrogen bonds between the second amine hydrogen and a carboxylate O with a second R 2 2(8) motif to form a discrete hydrogen-bonded complex containing two 2-amino-6-bromopyridinium moieties and two 2,3,5,6-tetrafluorobenzoate moieties. The 2-amino-6-bromopyridinium moieties π-stack in a head-to-tail mode with a centroid–centroid separation of 3.7227 (12) Å and adjacent tetrafluorobenzoates also π-stack in a head-to-tail mode with a centroid–centroid separation of 3.6537 (13) Å.


Sign in / Sign up

Export Citation Format

Share Document