lattice constants
Recently Published Documents


TOTAL DOCUMENTS

1432
(FIVE YEARS 142)

H-INDEX

55
(FIVE YEARS 8)

2022 ◽  
Vol 3 (1) ◽  
pp. 41-52
Author(s):  
Michael Vogl ◽  
Martin Valldor ◽  
Roman Boy Piening ◽  
Dmitri V. Efremov ◽  
Bernd Büchner ◽  
...  

We present the synthesis and characterization of the iridium-based sulfide Ca1−xIr4S6(S2). Quality and phase analysis were conducted by means of energy-dispersive X-ray spectroscopy (EDXS) and powder X-ray diffraction (XRD) techniques. Structure analysis reveals a monoclinic symmetry with the space group C 1 2/m 1 (No. 12), with the lattice constants a = 15.030 (3) Å, b = 3.5747 (5) Å and c = 10.4572 (18) Å. Both X-ray diffraction and EDXS suggest an off-stoichiometry of calcium, leading to the empirical composition Ca1−xIr4.0S6(S2) [x = 0.23–0.33]. Transport measurements show metallic behavior of the compound in the whole range of measured temperatures. Magnetic measurements down to 1.8 K show no long range order, and Curie–Weiss analysis yields θCW = −31.4 K, suggesting that the compound undergoes a magnetic state with short range magnetic correlations. We supplement our study with calculations of the band structure in the framework of the density functional theory.


Doklady BGUIR ◽  
2022 ◽  
Vol 19 (8) ◽  
pp. 87-91
Author(s):  
M. S. Baranava

The influence of the exchange-correlation functional on the crystal fundamental property calculation is shown. CrGeTe3, compound with transition metals, was used for the simulation of structural and electronic properties. The calculations were carried out using such functional classes as LDA and GGA. It has been shown that LDA exhibits 0.4 % and 5.2 % overestimations of the lattice constants for a and c, respectively. GGA (OR) overestimates a by 0.58 % and underestimates c by 4 %. The influence of the Hubbard correction on the band gap was also investigated. If Ueff is applied to the d-electrons, then the band gap will decrease. This is due to the hybridization of the p-electrons of the chalcogen and the d-electrons of the transition metal. Thus, GGA demonstrates better agreement with the experiment. The convergence of the calculation of the total energy with a change in the k-points and the cutoff energy were also investigated.


2021 ◽  
Vol 18 (3) ◽  
pp. 298-304
Author(s):  
Smita C Tolani ◽  
Kishorchandra G Rewatkar

The available literature and research work on W-type hexaferrites is mainly focused on Co- and Zn-based calcium W-type hexagonal ferrites with a variety of cationic substitutions. The Modifications in the properties of the Calcium W-type ferrite based on Ni2+ as the divalent metal ion, however, is not studied sufficiently in the research literature vailable. In this study, the focus is mainly on the effects of substitution of Ni2+ on the properties of CaCo2W exaferrites. The investigations carried out are mainly XRD, SEM and VSM. The main objective of this research investigation is to study the effect of substitution of Nickel and Cobalt on the structural and magnetic properties of calcium W-type hexaferrite CaCo2-xNixFe16O27 (x=0, 1 and 2). XRD analysis and characterization revealed slight decrease in the values of lattice constants ‘a’ and ‘c’ with increase in concentration ‘x’. The particle size was confirmed from SEM and TEM images. The analysis of VSM for magnetic properties reveals decrease in coercivity and increase in the values of saturation magnetization as concentration increases. The results of measurements made bythe various experimental techniques and the observations were compared to understand the crystalline and magnetic structure of the compounds


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Sami-ullah Rather ◽  
Usman Saeed ◽  
Abdulrahim Ahmad Al-Zahrani ◽  
Hisham S. Bamufleh ◽  
Hesham Abdulhamed Alhumade ◽  
...  

Nanocrystalline aluminum-doped manganese ferrite was synthesized by facile thermal treatment method. Nanostructure-doped ferrite with crystalline size that ranged between 3.71 and 6.35 nm was characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and vibrating-sample magnetometry (VSM). The Scherrer and Williamson-Hall hypothesis techniques were utilized to determine lattice constants and strain. Various types of structural properties including octahedral and tetrahedral site radius, bond lengths and angles, hopping parameter, oxygen positional parameters, site bonds, and edge lengths were determined from XRD spectrum analysis. Discrepancy in the hypothetically expected angle indicates improvement of A-B superexchange intercommunication. Furthermore, magnetic-hysteresis (M-H) and XPS analysis support the claim of enhancement. The presence of the ionic nature of iron and manganese in ferrite is FeII, FeIII, MnII, and MnIV as revealed by the results of XPS. Moreover, XPS assists in an excellent way to understand the properties such as configuration, chemical nature, and average inversion degree of doped ferrite samples. The spin noncollinearity and exquisite interaction amid the sublattice are responsible for the decrease in the saturation and remnant magnetization determined from the hysteresis loop at ambient temperature with maximum magnetic field of 1.8 T.


2021 ◽  
Author(s):  
Omer Tayfuroglu ◽  
Abdul Kadir Kocak ◽  
Yunus Zorlu

Metal‑organic frameworks (MOFs) with their exceptional porous and organized structures have been subject of numerous applications. Predicting macroscopic properties from atomistic simulations require the most accurate force fields, which is still a major problem due to MOFs’ hybrid structures governed by covalent, ionic and dispersion forces. Application of ab‑initio molecular dynamics to such large periodic systems are thus beyond the current computational power. Therefore, alternative strategies must be developed to reduce computational cost without losing reliability. In this work, we describe the construction of a neural network potential (NNP) for IRMOF‑n series (n=1,4,7,10) trained by PBE-D4/def2-TZVP reference data of MOF fragments. We validated the resulting NNP on both fragments and bulk MOF structures by prediction of properties such as equilibrium lattice constants, phonon density of states and linker orientation. The energy and force RMSE values for the fragments are only 0.0017 eV/atom and 0.15 eV/Å, respectively. The NNP predicted equilibrium lattice constants of bulk structures, which are not included in training, are off by only 0.2-2.4% from experimental results. Moreover, our fragment trained NNP greatly predicts phenylene ring torsional energy barrier, equilibrium bond distances and vibrational density of states of bulk MOFs. Furthermore, NNP allows us to investigate unusual behaviors of selected MOFs such as the thermal expansion properties and the effect of mechanical strain on the adsorption of hydrogen and methane molecules. The NNP based molecular dynamics (MD) simulations suggest the IRMOF‑4 and IRMOF‑7 to have positive‑to‑negative thermal expansion coefficients while the rest to have only negative thermal expansion under the studied temperatures of 200 K to 400 K. The deformation of bulk structure by reduction of unit cell volume has shown to increase volumetric methane uptake in IRMOF‑1 but decrease in IRMOF‑7 due to the steric hindrance.


2021 ◽  
Vol 48 (12) ◽  
Author(s):  
Pierre Hirel ◽  
Jean Furstoss ◽  
Philippe Carrez

AbstractFive different interatomic potentials designed for modelling forsterite Mg$$_2$$ 2 SiO$$_4$$ 4 are compared to ab initio and experimental data. The set of tested properties include lattice constants, material density, elastic wave velocity, elastic stiffness tensor, free surface energies, generalized stacking faults, neutral Frenkel and Schottky defects, in the pressure range $$0-12$$ 0 - 12  GPa relevant to the Earth’s upper mantle. We conclude that all interatomic potentials are reliable and applicable to the study of point defects. Stacking faults are correctly described by the THB1 potential, and qualitatively by the Pedone2006 potential. Other rigid-ion potentials give a poor account of stacking fault energies, and should not be used to model planar defects or dislocations. These results constitute a database on the transferability of rigid-ion potentials, and provide strong physical ground for simulating diffusion, dislocations, or grain boundaries.


2021 ◽  
Author(s):  
Chengxin Cai ◽  
Xue Wang ◽  
Qifu Wang ◽  
Mingxing Li ◽  
Guangchen He ◽  
...  

Abstract For three-dimensional pentamode metamaterials, it is of great significance to realize underwater ultra-low frequency acoustic wave control. Therefore, two types multilayer composite cylindrical three-dimensional pentamode metamaterials with ultra-low frequency and broad band gaps are proposed in this paper. By using pentamode metamaterials with lattice constants on the order of centimeters, the phononic band gaps below 60 Hz and the single-mode area below 30Hz can be obtained. Compared with asymmetrical double-cone locally resonant pentamode metamaterials, the lower edge frequency, relative bandwidth and figure of merit of the first phononic band gap can be reduced by up to 61.4%, 10.3% and 40.6%, respectively. It will provide reference and guidance for the engineering application of pentamode metamaterials in controlling the ultra-low frequency broadband acoustic waves, vibration and noise reduction.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2712
Author(s):  
Guangbiao Xiang ◽  
Yanwen Wu ◽  
Man Zhang ◽  
Chen Cheng ◽  
Jiancai Leng ◽  
...  

Low-toxicity, air-stable cesium bismuth iodide Cs3Bi2X9 (X = I, Br, and Cl) perovskites are gaining substantial attention owing to their excellent potential in photoelectric and photovoltaic applications. In this work, the lattice constants, band structures, density of states, and optical properties of the Cs3Bi2X9 under high pressure perovskites are theoretically studied using the density functional theory. The calculated results show that the changes in the bandgap of the zero-dimensional Cs3Bi2I9, one-dimensional Cs3Bi2Cl9, and two-dimensional Cs3Bi2Br9 perovskites are 3.05, 1.95, and 2.39 eV under a pressure change from 0 to 40 GPa, respectively. Furthermore, it was found that the optimal bandgaps of the Shockley–Queisser theory for the Cs3Bi2I9, Cs3Bi2Br9, and Cs3Bi2Cl9 perovskites can be reached at 2–3, 21–26, and 25–29 GPa, respectively. The Cs3Bi2I9 perovskite was found to transform from a semiconductor into a metal at a pressure of 17.3 GPa. The lattice constants, unit-cell volume, and bandgaps of the Cs3Bi2X9 perovskites exhibit a strong dependence on dimension. Additionally, the Cs3Bi2X9 perovskites have large absorption coefficients in the visible region, and their absorption coefficients undergo a redshift with increasing pressure. The theoretical calculation results obtained in this work strengthen the fundamental understanding of the structures and bandgaps of Cs3Bi2X9 perovskites at high pressures, providing a theoretical support for the design of materials under high pressure.


Sign in / Sign up

Export Citation Format

Share Document