Oxidationsreaktionen an ΧnB6Η6-n2-, Χ = Cl, Br, I; n = 1-6 und Kristallstrukturen von [(n-C4H9)4N]B6I6 und [(n-C4H9)4N]2B6I6 / Oxidation Reactions on XnB6H6-n2-, X = Cl, Br, I; n = 1-6, and Crystal Structures of [(n-C4H9)4N]B6I6 and [(n-C4H9)4N],B6I6

1990 ◽  
Vol 45 (2) ◽  
pp. 184-190 ◽  
Author(s):  
A. Heinrich ◽  
H.-L. Keller ◽  
W. Preetz

By cyclic voltammetry investigations in acetonitrile solution it has been shown, that the halogenohydrohexaborates X„B6H6-n2-, X = Cl, Br, I; n = 1-6, undergo a one-electron oxidation to form the corresponding radical anions. The reactions are completely reversible only for the perhalogenated ions B6X62- and for trans-Br4Β6Η22-. The oxidation by Ce(IV) in CH3CN yields deep blue B6I6, orange B6Br6- and yellow green B6Cl6-, characterized by their UV-VIS, IR/Raman spectra and by magnetic measurements. The crystal structures of the paramagnetic, air-stable, blue-black [(n-C4H9)4N]B6I6 (I) and the diamagnetic, colourless [(n-C4H9)4N]2B6I6 (II) were determined from single crystal X-ray diffraction analyses. I is monoclinic, space group P21/c, with a = 14.398(7), b = 14.638(3), c = 16.511(6) Å, β = 109.24(1)° (at —50°C), containing two crystallographically independent centrosymmetric B6 entities, which are strongly distorted with B— B bond lengths between 1.63 and 1.91 and I— I between 2.02 and 2.22 A. II is monoclinic, space group P21, with a = 11.246(3), b = 15.576(4), c = 14.900(4) Å, β = 92.10(1)° (at 23 °C) and contains nearly regular octahedral anions with bond lengths B—B 1.64-1.68 and B—I 2.17-2.21 A.

1985 ◽  
Vol 40 (2) ◽  
pp. 251-257 ◽  
Author(s):  
Siegfried Pohl ◽  
Wolfgang Saak ◽  
Bernt Krebs

Abstract The compounds [(C6H5)4As]2 TeCl4 (1), [(C2H5)4 N]2 TeBr4 · CH3CN (2), and [(C2H5)4N]2TeI4 (3) were prepared by the reaction of Te, X2 , and excess (C2H5)4NX (X = Br, I) in acetonitrile solution or by heating of [(C6H5)4 As]2TeCl6 , Te, and (C6H5)4 ASCl for several hours in the same solvent.The structures of 1-3 were determined from single crystal X-ray data.1 crystallizes in the monoclinic space group P21/n with a = 1061.8(2), b = 1614.2(3), c = 1341.7(3) pm, β = 94.21° and Z = 2; 2: tetragonal, P4/mmm, a = 1039.7(2), c = 690.5(1), Z = 1; 3: tetragonal, I4/mmm, a = 1061.7(2), c = 1342.8(4), Z = 2. In 1-3 Te(II) exhibits a square planar coordination. The Te -CI, Te -Br, and Te-I bond lengths were found to be 260.7 (mean), 275.3, and 298.5 pm, respectively.


1988 ◽  
Vol 41 (3) ◽  
pp. 283 ◽  
Author(s):  
GB Robertson ◽  
PA Tucker

The structures of two crystalline modifications of mer -(Pme2Ph)3H-cis-Cl2IrIII, (1), have been determined from single-crystal X-ray diffraction data. Modification (A) is monoclinic, space group P21/c with a 12.635(1), b 30.605(3), c 14.992(2)Ǻ, β 110.01(2)° and Z = 8. Modification (B) is orthorhombic, space group Pbca with a 27.646(3), b 11.366(1), c 17.252(2)Ǻ and Z = 8. The structures were solved by conventional heavy atom techniques and refined by full-matrix least- squares analyses to conventional R values of 0.037 [(A), 8845 independent reflections] and 0.028 [(B), 5291 independent reflections]. Important bond lengths [Ǻ] are Ir -P(trans to Cl ) 2.249(1) av. (A) and 2.234(1) (B), Ir -P(trans to PMe2Ph) 2.339(2) av. (A) and 2.344(1), 2.352(1) (B), Ir-Cl (trans to H) 2.492(2), 2.518(2) (A) and 2.503(1) (B) and Ir-Cl (trans to PMe2Ph)2.452(2) av. (A) and 2.449(1)(B). Differences in chemically equivalent metal- ligand bond lengths emphasize the importance of non-bonded contacts in determining those lengths.


1997 ◽  
Vol 50 (9) ◽  
pp. 903 ◽  
Author(s):  
Trevor W. Hambley ◽  
Walter C. Taylor ◽  
Stephen Toth

Four novel norditerpenoids were isolated from a new encrusting sponge, conveniently labelled Aplysilla pallida. The structures of aplypallidenone (1), aplypallidoxone (2), aplypallidione (3) and aplypallidioxone (4) were elucidated by spectroscopic studies and the crystal structures of aplypallidenone and aplypallidoxone have been determined by X-ray diffraction methods. The structure of (1) was refined to a residual of 0·040 for 1665 independent observed reflections and the structure of (2) was refined to a residual of 0·031 for 1699 independent observed reflections. The crystals of (1) are orthorhombic, space group P212121, a 7·728(2), b 10·838(4), c 24·880(5) Å, Z 4. Those of (2) are monoclinic, space group C 2, a 23·927(7), b 6·674(2), c 14·033(3) Å, Z 4.


Author(s):  
Michel Fleck ◽  
Ekkehart Tillmanns ◽  
Ladislav Bohatý ◽  
Peter Held

AbstractThe crystal structures of eight different L-malates have been determined and refined from single-crystal X-ray diffraction data. The compounds are the monoclinic (space groupIn addition, for all the compounds, powder diffraction data were collected, analysed and submitted to the powder diffraction file (PDF).


1996 ◽  
Vol 49 (4) ◽  
pp. 527 ◽  
Author(s):  
PT Gulyas ◽  
TW Hambley ◽  
PA Lay

The crystal structure of [ Ru ( terpy )( bpy )( pz )] (PF6)2 has been determined by X-ray diffraction methods and refined to a residual of 0.046 for 1855 independent observed reflections. The crystals are monoclinic, space group P 21/a, a 16.836(7), b 10.778(5), c l9.342(5) Ǻ, β 115.11(3)°. The coordination geometry around the ruthenium(II) ion is distorted octahedral, with the various Ru -N bond lengths indicative of considerable interligand steric strain. The Ru -N pyrazine bond is the longest within the structure, consistent with other evidence that n back-bonding to pyrazine is weak in the complex.


1995 ◽  
Vol 48 (6) ◽  
pp. 1183 ◽  
Author(s):  
EJ Ditzel ◽  
GB Robertson

The syntheses and subsequent characterization of the complexes mer -trans-(PPri3)2(Pme2Ph)-Cl-cis-H2IrIII(1) and mer-trans-(PPri3)2(PMe2Ph)H3IrIII (2) by n.m.r. and by low temperature (153�5 K) X-ray diffraction analyses are reported. Crystals of (1) are monoclinic, space group P21/c with a 19.277(2), b 9.020(1), c 17.657(2) Ǻ, β 101.40(1)° and Z 4. Crystals of (2) are orthorhombic, space group P212121, with a 19.373(3), b 18.724(2), c 8.113(1) Ǻ and Z 4. Full-matrix least-squares analyses converged with R = 0.027 and wR = 0.031 for (1) (3243 reflections), and R = 0.030 and wR = 0.038 for (2) (2892 reflections). Consistent with previous observation, the unit increase in chloride content (in place of hydride) in (1) is accompanied by a global lengthening of 0.036 Ǻ (av.) in the Ir -P bond lengths cf. those in (2). Also, because of increased steric crowding (two PPri3 ligands in place of two Pme2Ph), the Ir-PMe2Ph bond in (1) is 0.019(2) Ǻ longer than the chemically equivalent bond in mer-(PMe2Ph)3Cl-cis-H2IrIII. In previously reported complexes in this series metrically similar increases in Ir-PMe2Ph distances result from the replacement of just one Pme2Ph ligand by PPri3.


Author(s):  
G. D. Nigam ◽  
G. Mattern ◽  
R. Fröhlich

AbstractThe crystal and molecular structures of 1-(m-nitrophenyl)-2,2-dicarboethoxy-3-phenyl-pyrrolidin-5-one (I) and 1-(p-chlorophenyl)-2,2-dicarboethoxy-3-phenyl-pyrrolidin-5-one (II) have been determined by X-ray diffraction methods. (I) crystallizes in the monoclinic space group


1999 ◽  
Vol 54 (10) ◽  
pp. 1222-1228 ◽  
Author(s):  
S. Strueß ◽  
W. Preetz

By treatment of fac-[ReCl3I3]2- with (SeCN)2 indichloromethane fac-[ReCl3(NCSe)3]2- (1), mer-[ReCl3(NCSe)2cis (SeCN)]2- (2) and mer-[ReCl3I(NCSe)2cis]2- (3) are formed which have been separated by ion exchange chromatography on diethylaminoethyl cellulose. The crystal structures of mer-(Ph-P)2[ReCl3(NCSe)2cis(SeCN)] (triclinic, space group Pl̅, a = 16.099(1), b = 16.729(3), c =21.026(2) Å, α = 70.194(10), ß = 73.958(10), γ = 83.929(10)°, Z = 4) and mer-(n-Bu4N)2[ReCl3|(NCSe)2cis] (monoclinic, space group P21/c, a = 11.838(1), b = 12.796(2), c = 30.767(2) Å, ß = 97.419(6)°, Z = 4) have been determined by single crystal X-ray diffraction analysis. Based on the molecular parameters of the X-ray determinations the low temperature (10 K) IR and Raman spectra of the (n-Bu4N) salts have been assigned by normal coordinate analysis. The valence force constants are fd(ReN) = 1.79 (1), 1.71 (2), 1.71 (3) and fd(ReSe) = 1.15 (2) mdyn/Å.


1987 ◽  
Vol 42 (9) ◽  
pp. 1107-1109 ◽  
Author(s):  
Frank Edelmann ◽  
Claudia Spang ◽  
Mathias Noltemeyer ◽  
George M. Sheldrick ◽  
Nayla Keweloh ◽  
...  

(PhAsNSN)2 (1) reacts with M(CO)4(C7H8) (M = a Cr. b Mo) to yield (PhAsNSN)2M(CO)4 (2). 2a and 2b are dark red air stable complexes. 2b was characterized by X-ray diffraction. Crystals of 2b are monoclinic, space group C2/c, with a = 2884.7(4). b = 1166.2(2), c = 1344.1(2) pm, fβ = 104.81(2)° and Z = 8. The molecule exhibits approximate mm (C2v) symmetry with mean bond lengths: Mo-As 255.1. Mo-C 201.8. As-N 186.2 and S -N 152.8 pm.


1990 ◽  
Vol 45 (7) ◽  
pp. 995-999 ◽  
Author(s):  
Karin Ruhlandt-Senge ◽  
Ulrich Müller

The title compounds were obtained from NiS + PPh4Cl + HCl in dichloromethane, from NiCl2 and PPh4Cl and from NiCl2 + Na2S + 15-crown-5 in acetonitrile or CH2Cl2, respectively. Their crystal structures were determined by X-ray diffraction. (PPh4)2[NiCl4]: monoclinic, space group C 2/c, Z = 4, a = 1094.9(3), b = 1946.1(4), c = 2033.5(5) pm, β = 91.48(3)°; R = 0.07 for 2895 unique observed reflexions. [Na-15-crown-5]2[NiCl4]: triclinic, space group P1̄, Z = 2, a = 987.6(1), b = 998.0(1), c = 1779.9(2) pm, α = 104.17(1), β = 95.43(1), γ = 109.95(1)°; R = 0.090 for 4155 unique observed reflexions. In both cases, the [NiCl4]2- ions have distorted tetrahedral structures. With PPh4+ as the cation the distortion corresponds to a twisted tetrahedron which fulfils the point symmetry D2, the deviation from a flattened D2d-tetrahedron being small. In (PPh4)2[NiCl4] cations and anions alternate in layers parallel to (001). In [Na-15-crown-5]2[NiCl4] two of the Cl atoms of the anion are coordinated to sodium ions; one of the crown ether molecules shows positional disorder.


Sign in / Sign up

Export Citation Format

Share Document