scholarly journals The application of quantum mechanics in structure-based drug design

2013 ◽  
Vol 8 (3) ◽  
pp. 263-276 ◽  
Author(s):  
Daniel Mucs ◽  
Richard A Bryce
Author(s):  
Prajakta U. Kulkarni ◽  
Harshil Shah ◽  
Vivek K. Vyas

: Quantum mechanics (QM) is physics based theory which explains the physical properties of nature at the level of atoms and sub-atoms. Molecular mechanics (MM) construct molecular systems through the use of classical mechanics. So, hybrid quantum mechanics and molecular mechanics (QM/MM) when combined together can act as computer-based methods which can be used to calculate structure and property data of molecular structures. Hybrid QM/MM combines the strengths of QM with accuracy and MM with speed. QM/MM simulation can also be applied for the study of chemical process in solutions as well as in the proteins, and has a great scope in structure-based drug design (CADD) and discovery. Hybrid QM/MM also applied to HTS, to derive QSAR models and due to availability of many protein crystal structures; it has a great role in computational chemistry, especially in structure- and fragment-based drug design. Fused QM/MM simulations have been developed as a widespread method to explore chemical reactions in condensed phases. In QM/MM simulations, the quantum chemistry theory is used to treat the space in which the chemical reactions occur; however the rest is defined through molecular mechanics force field (MMFF). In this review, we have extensively reviewed recent literature pertaining to the use and applications of hybrid QM/MM simulations for ligand and structure-based computational methods for the design and discovery of therapeutic agents.


2007 ◽  
Vol 12 (17-18) ◽  
pp. 725-731 ◽  
Author(s):  
Kaushik Raha ◽  
Martin B. Peters ◽  
Bing Wang ◽  
Ning Yu ◽  
Andrew M. Wollacott ◽  
...  

2019 ◽  
Author(s):  
Mohammad Rezaei ◽  
Yanjun Li ◽  
Xiaolin Li ◽  
Chenglong Li

<b>Introduction:</b> The ability to discriminate among ligands binding to the same protein target in terms of their relative binding affinity lies at the heart of structure-based drug design. Any improvement in the accuracy and reliability of binding affinity prediction methods decreases the discrepancy between experimental and computational results.<br><b>Objectives:</b> The primary objectives were to find the most relevant features affecting binding affinity prediction, least use of manual feature engineering, and improving the reliability of binding affinity prediction using efficient deep learning models by tuning the model hyperparameters.<br><b>Methods:</b> The binding site of target proteins was represented as a grid box around their bound ligand. Both binary and distance-dependent occupancies were examined for how an atom affects its neighbor voxels in this grid. A combination of different features including ANOLEA, ligand elements, and Arpeggio atom types were used to represent the input. An efficient convolutional neural network (CNN) architecture, DeepAtom, was developed, trained and tested on the PDBbind v2016 dataset. Additionally an extended benchmark dataset was compiled to train and evaluate the models.<br><b>Results: </b>The best DeepAtom model showed an improved accuracy in the binding affinity prediction on PDBbind core subset (Pearson’s R=0.83) and is better than the recent state-of-the-art models in this field. In addition when the DeepAtom model was trained on our proposed benchmark dataset, it yields higher correlation compared to the baseline which confirms the value of our model.<br><b>Conclusions:</b> The promising results for the predicted binding affinities is expected to pave the way for embedding deep learning models in virtual screening and rational drug design fields.


Sign in / Sign up

Export Citation Format

Share Document