mesenchymal epithelial transition
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 77)

H-INDEX

34
(FIVE YEARS 5)

2022 ◽  
Vol 23 (2) ◽  
pp. 800
Author(s):  
Monica Fedele ◽  
Riccardo Sgarra ◽  
Sabrina Battista ◽  
Laura Cerchia ◽  
Guidalberto Manfioletti

The transition between epithelial and mesenchymal phenotype is emerging as a key determinant of tumor cell invasion and metastasis. It is a plastic process in which epithelial cells first acquire the ability to invade the extracellular matrix and migrate into the bloodstream via transdifferentiation into mesenchymal cells, a phenomenon known as epithelial–mesenchymal transition (EMT), and then reacquire the epithelial phenotype, the reverse process called mesenchymal–epithelial transition (MET), to colonize a new organ. During all metastatic stages, metabolic changes, which give cancer cells the ability to adapt to increased energy demand and to withstand a hostile new environment, are also important determinants of successful cancer progression. In this review, we describe the complex interaction between EMT and metabolism during tumor progression. First, we outline the main connections between the two processes, with particular emphasis on the role of cancer stem cells and LncRNAs. Then, we focus on some specific cancers, such as breast, lung, and thyroid cancer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Hongge Liang ◽  
Dexun Zhou ◽  
Lin Dai ◽  
Moqin Zhang ◽  
Zhancheng Gao ◽  
...  

BackgroundThe c-mesenchymal–epithelial transition factor (C-MET) is an oncogene encoding a tyrosine kinase receptor that plays an important role in tumor growth and metastasis. The National Comprehensive Cancer Network (NCCN) guidelines have approved carbatinib/crizotinib for advanced non-small cell lung cancer (NSCLC) patients with MET exon 14 skipping.MethodsIn June 2020, the Department of Respiratory and Critical Care Medicine of Peking University People’s Hospital admitted a 72-year-old male patient with lung adenocarcinoma (LADC) with a history of interstitial lung disease secondary to antineutrophil cytoplasmic antibody-associated vasculitis. Genetic examination by next-generation sequencing showed an intergenic fusion of MET, and crizotinib was administered on August 14, 2020. Follow-up showed that tumor volume was significantly reduced. However, crizotinib was discontinued in November 2020 because of the patient’s worsening interstitial lung disease, and CT scans showed continued partial response (PR) for 5 months. In April 2021, right lower lobe mass progressed, and disease progression was considered.ConclusionThis was the first case of a patient with LADC with MET intergenic fusion who significantly benefited from crizotinib. Even after crizotinib was discontinued for 5 months, the patient continued exhibiting PR, suggesting that MET intergenic fusion may have carcinogenic activity in LADC and was sensitive to crizotinib.


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5135
Author(s):  
Ayalur Raghu Subbalakshmi ◽  
Sarthak Sahoo ◽  
Isabelle McMullen ◽  
Aaditya Narayan Saxena ◽  
Sudhanva Kalasapura Venugopal ◽  
...  

Epithelial–Mesenchymal Plasticity (EMP) refers to reversible dynamic processes where cells can transition from epithelial to mesenchymal (EMT) or from mesenchymal to epithelial (MET) phenotypes. Both these processes are modulated by multiple transcription factors acting in concert. While EMT-inducing transcription factors (TFs)—TWIST1/2, ZEB1/2, SNAIL1/2/3, GSC, and FOXC2—are well-characterized, the MET-inducing TFs are relatively poorly understood (OVOL1/2 and GRHL1/2). Here, using mechanism-based mathematical modeling, we show that transcription factor KLF4 can delay the onset of EMT by suppressing multiple EMT-TFs. Our simulations suggest that KLF4 overexpression can promote a phenotypic shift toward a more epithelial state, an observation suggested by the negative correlation of KLF4 with EMT-TFs and with transcriptomic-based EMT scoring metrics in cancer cell lines. We also show that the influence of KLF4 in modulating the EMT dynamics can be strengthened by its ability to inhibit cell-state transitions at the epigenetic level. Thus, KLF4 can inhibit EMT through multiple parallel paths and can act as a putative MET-TF. KLF4 associates with the patient survival metrics across multiple cancers in a context-specific manner, highlighting the complex association of EMP with patient survival.


2021 ◽  
Vol Volume 16 ◽  
pp. 2783-2793
Author(s):  
Nobuhiro Fujioka ◽  
Masahiro Kitabatake ◽  
Noriko Ouji-Sageshima ◽  
Takahiro Ibaraki ◽  
Makiko Kumamoto ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Minseong Kim ◽  
Carmen Reinhard ◽  
Christof Niehrs

Zinc and ring finger 3 (ZNRF3) is a transmembrane E3 ubiquitin ligase that targets Wnt receptors for ubiquitination and lysosomal degradation. Previously we showed that dephosphorylation of an endocytic tyrosine motif (4Y motif) in ZNRF3 by protein tyrosine phosphatase receptor-type kappa (PTPRK) promotes ZNRF3 internalization and Wnt receptor degradation (Chang et al. 2020). However, a responsible protein tyrosine kinase(s) (PTK) phosphorylating the 4Y motif remained elusive. Here we identify the proto-oncogene MET (mesenchymal-epithelial transition factor) as a 4Y kinase. MET binds to ZNRF3 and induces 4Y phosphorylation, stimulated by the MET ligand HGF (hepatocyte growth factor, scatter factor). HGF-MET signalling reduces ZNRF3-dependent Wnt receptor degradation thereby enhancing Wnt/b-catenin signalling. Conversely, depletion or pharmacological inhibition of MET promotes internalization of ZNRF3 and Wnt receptor degradation. We conclude that HGF-MET signalling phosphorylates- and PTPRK dephosphorylates ZNRF3 to regulate ZNRF3 internalization, functioning as a rheostat for Wnt signalling that may offer novel opportunities for therapeutic intervention.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yaolin Song ◽  
Guangqi Li ◽  
Kun Ju ◽  
Wenwen Ran ◽  
Han Zhao ◽  
...  

BackgroundLung cancer is a major health concern worldwide because of its increasing incidence and mortality. This study aimed to clarify the association between mesenchymal-epithelial transition (MET) genomic alterations and clinical characteristics of lung cancer.MethodWe collected data from 5,008 patients with lung cancer diagnosed and treated between January 2017 and July 2021 at the Affiliated Hospital of Qingdao University. Genomic alterations in the MET gene, including the exon 14 skipping mutation and amplification, were detected using amplification refractory mutation system-polymerase chain reaction (2,057 cases) and next-generation sequencing (2,951 cases). Clinical characteristics such as age, sex, tumor location, tumor stage, smoking, pleural invasion, and histology were statistically analyzed for MET exon 14 skipping mutation and amplification. The DNA splicing sites causing the MET exon 14 skipping mutation at the mRNA level were also investigated.ResultsThe incidence of the MET exon 14 skipping mutation was 0.90% (41/4,564) in adenocarcinoma, 1.02% (3/294) in squamous cell carcinoma, and 8.33% (1/12) in sarcomatoid carcinoma specimens. It was more frequently observed in patients over 60 years of age than the MET exon 14 skipping mutation wildtype. The MET exon 14 skipping mutation co-occurred with epidermal growth factor receptor (EGFR) L858R, EGFR 19-Del, and BRAF V600E mutations. At the DNA level, single nucleotide mutation and small fragment deletion (1–38 base pairs) upstream and downstream of MET exon 14 led to MET exon 14 skipping mutation at the mRNA level. MET amplification occurred in 0.78% (21/2,676) adenocarcinoma and 1.07% (2/187) squamous cell carcinoma specimens and was significantly associated with advanced tumor stages (III + IV) compared to the MET amplification wildtype. MET amplification primarily co-occurred with the EGFR mutation.ConclusionsOur study found that MET genomic alterations were statistically related to age and tumor stage and co-existed with mutations of other oncogenic driver genes, such as EGFR and BRAF. Moreover, various splicing site changes at the DNA level led to the exon 14 skipping mutation at the mRNA level. Further studies are required to clarify the association between MET genomic alterations and prognosis.


2021 ◽  
Author(s):  
Ayalur Raghu Subbalakshmi ◽  
Sarthak Sahoo ◽  
Isabelle McMullen ◽  
Aaditya Narayan Saxena ◽  
Sudhanva Kalasapura Venugopal ◽  
...  

Epithelial-Mesenchymal Plasticity (EMP) refers to reversible dynamic processes where cells can transition from epithelial to mesenchymal (EMT) or from mesenchymal to epithelial (MET) phenotypes. Both these processes are modulated by multiple transcription factors acting in concert. While EMT-inducing transcription factors (TFs) - TWIST1/2, ZEB1/2, SNAIL1/2/3, GSC, FOXC2 - are well-characterized, the MET-inducing TFs are relatively poorly understood (OVOL1/2, GRHL1/2). Here, using mechanism-based mathematical modeling, we show that the transcription factor KLF4 can delay the onset of EMT by suppressing multiple EMT-TFs. Our simulations suggest that KLF4 overexpression can promote phenotypic shift toward a more epithelial state, an observation suggested by negative correlation of KLF4 with EMT-TFs and with transcriptomic based EMT scoring metrics in cancer cell lines. We also show that the influence of KLF4 in modulating EMT dynamics can be strengthened by its ability to inhibit cell-state transitions at an epigenetic level. Thus, KLF4 can inhibit EMT through multiple parallel paths and can act as a putative MET-TF. KLF4 associates with patient survival metrics across multiple cancers in a context-specific manner, highlighting the complex association of EMP with patient survival.


Sign in / Sign up

Export Citation Format

Share Document