protein crystal
Recently Published Documents


TOTAL DOCUMENTS

960
(FIVE YEARS 146)

H-INDEX

58
(FIVE YEARS 6)

2022 ◽  
Vol 36 ◽  
pp. 100744
Author(s):  
Zhijie Yuan ◽  
Mengyuan Wu ◽  
Yingshuang Meng ◽  
Yuchao Niu ◽  
Wu Xiao ◽  
...  

2022 ◽  
Vol 55 (1) ◽  
Author(s):  
Diandra Doppler ◽  
Mohammad T. Rabbani ◽  
Romain Letrun ◽  
Jorvani Cruz Villarreal ◽  
Dai Hyun Kim ◽  
...  

Serial femtosecond crystallography (SFX) is a powerful technique that exploits X-ray free-electron lasers to determine the structure of macromolecules at room temperature. Despite the impressive exposition of structural details with this novel crystallographic approach, the methods currently available to introduce crystals into the path of the X-ray beam sometimes exhibit serious drawbacks. Samples requiring liquid injection of crystal slurries consume large quantities of crystals (at times up to a gram of protein per data set), may not be compatible with vacuum configurations on beamlines or provide a high background due to additional sheathing liquids present during the injection. Proposed and characterized here is the use of an immiscible inert oil phase to supplement the flow of sample in a hybrid microfluidic 3D-printed co-flow device. Co-flow generation is reported with sample and oil phases flowing in parallel, resulting in stable injection conditions for two different resin materials experimentally. A numerical model is presented that adequately predicts these flow-rate conditions. The co-flow generating devices reduce crystal clogging effects, have the potential to conserve protein crystal samples up to 95% and will allow degradation-free light-induced time-resolved SFX.


Author(s):  
Oliviero Carugo

The accuracy of B factors in protein crystal structures has been determined by comparing the same atoms in numerous, independent crystal structures of Gallus gallus lysozyme. Both B-factor absolute differences and normal probability plots indicate that the estimated B-factor errors are quite large, close to 9 Å2 in ambient-temperature structures and to 6 Å2 in low-temperature structures, and surprisingly are comparable to values estimated two decades ago. It is well known that B factors are not due to local movements only but reflect several, additional factors from crystal defects, large-scale disorder, diffraction data quality etc. It therefore remains essential to normalize B factors when comparing different crystal structures, although it has clearly been shown that they provide useful information about protein dynamics. Improved, quantitative analyses of raw B factors require novel experimental and computational tools that are able to disaggregate local movements from other features and properties that affect B factors.


IUCrJ ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Oleg Mikhailovskii ◽  
Yi Xue ◽  
Nikolai R. Skrynnikov

A procedure has been developed for the refinement of crystallographic protein structures based on the biomolecular simulation program Amber. The procedure constructs a model representing a crystal unit cell, which generally contains multiple protein molecules and is fully hydrated with TIP3P water. Periodic boundary conditions are applied to the cell in order to emulate the crystal lattice. The refinement is conducted in the form of a specially designed short molecular-dynamics run controlled by the Amber ff14SB force field and the maximum-likelihood potential that encodes the structure-factor-based restraints. The new Amber-based refinement procedure has been tested on a set of 84 protein structures. In most cases, the new procedure led to appreciably lower R free values compared with those reported in the original PDB depositions or obtained by means of the industry-standard phenix.refine program. In particular, the new method has the edge in refining low-accuracy scrambled models. It has also been successful in refining a number of molecular-replacement models, including one with an r.m.s.d. of 2.15 Å. In addition, Amber-refined structures consistently show superior MolProbity scores. The new approach offers a highly realistic representation of protein–protein interactions in the crystal, as well as of protein–water interactions. It also offers a realistic representation of protein crystal dynamics (akin to ensemble-refinement schemes). Importantly, the method fully utilizes the information from the available diffraction data, while relying on state-of-the-art molecular-dynamics modeling to assist with those elements of the structure that do not diffract well (for example mobile loops or side chains). Finally, it should be noted that the protocol employs no tunable parameters, and the calculations can be conducted in a matter of several hours on desktop computers equipped with graphical processing units or using a designated web service.


2021 ◽  
Author(s):  
Jack B. Greisman ◽  
Kevin M. Dalton ◽  
Candice J. Sheehan ◽  
Margaret A. Klureza ◽  
Doeke R. Hekstra

Single-wavelength anomalous diffraction (SAD) is a routine method for overcoming the phase problem when solving a new macromolecular structure. This technique requires the accurate measurement of intensities to sensitively determine differences across Bijvoet pairs, making it a stringent test for the reliability of a data collection method. Although SAD experiments are commonly conducted at cryogenic temperatures to mitigate the effects of radiation damage, such temperatures can alter the conformational ensemble of the protein crystal and may impede the merging of data from multiple crystals due to non-uniform freezing. Here, we propose a data collection strategy to obtain high-quality data from room temperature samples. To illustrate the strengths of this approach we use native SAD phasing at 6.5 keV to solve four structures of three model systems at 295 K. The resulting datasets allow for automatic phasing and model building, and exhibit alternate conformations that are well-supported by the electron density. The high-redundancy data collection method demonstrated here enables the routine collection of high-quality, room-temperature diffraction to improve the study of protein conformational ensembles.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ikuko Miyaguchi ◽  
Miwa Sato ◽  
Akiko Kashima ◽  
Hiroyuki Nakagawa ◽  
Yuichi Kokabu ◽  
...  

AbstractLow-resolution electron density maps can pose a major obstacle in the determination and use of protein structures. Herein, we describe a novel method, called quality assessment based on an electron density map (QAEmap), which evaluates local protein structures determined by X-ray crystallography and could be applied to correct structural errors using low-resolution maps. QAEmap uses a three-dimensional deep convolutional neural network with electron density maps and their corresponding coordinates as input and predicts the correlation between the local structure and putative high-resolution experimental electron density map. This correlation could be used as a metric to modify the structure. Further, we propose that this method may be applied to evaluate ligand binding, which can be difficult to determine at low resolution.


2021 ◽  
Author(s):  
Dom Bellini

In X-ray macromolecular crystallography, cryoprotection of crystals mounted on harvesting loops is achieved when the water in the sample solvent transitions to vitreous ice before crystalline ice forms. This is achieved by rapid cooling in liquid nitrogen or propane. Protocols for protein crystal cryoprotection are based on either increasing environmental pressure or reducing the water fraction in the solvent. This study presents a new protocol for cryoprotecting crystals. It is based on vapour diffusion dehydration of the crystal drop to reduce the water fraction in the solvent by adding a highly concentrated salt solution, 13 M potassium formate (KF13), directly to the reservoir. Cryoprotection by the KF13 protocol is non-invasive to the crystal, high throughput, not labour intensive, can benefit diffraction resolution and ligand binding, and is very useful in cases with high redundancy such as drug discovery projects which utilize very large compound or fragment libraries. Moreover, an application of KF13 to discover new crystal hits from clear drops of equilibrated crystallization screening plates is also shown.


2021 ◽  
Author(s):  
Christo N. Nanev ◽  
Emmanuel Saridakis ◽  
Lata Govada ◽  
Naomi E. Chayen

Abstract Well-diffracting protein crystals are indispensable for X-ray diffraction analysis, which is still the most powerful method for structure-function studies of biomolecules. A promising approach to growing such crystals is by using porous nucleation-inducing materials. However, while protein crystal nucleation in pores has been thoroughly considered, little attention has been paid to the subsequent growth of the crystals. Although the nucleation stage is decisive, it is the subsequent growth of the crystals outside the pore that determines their diffraction quality. The molecular-scale mechanism of growth of protein crystals in and outside pores is here considered theoretically. Due to the metastable conditions, the crystals that emerge from the pores grow slowly, which is a prerequisite for better diffraction. This expectation has been corroborated by experiments carried out with several types of porous material, such as Bioglass (“Naomi’s Nucleant”), Buckypaper, porous gold and porous silicon. Protein crystals grown with the aid of Bioglass and Buckypaper yielded significantly better diffraction quality compared with crystals grown conventionally. In all cases, visually superior crystals are usually obtained. We furthermore conclude that heterogeneous nucleation of a crystal outside the pore is an exceptional case. Rather, the protein crystals nucleating inside the pores continue growing outside them.


Sign in / Sign up

Export Citation Format

Share Document