scholarly journals The effect of intraoperative lung protective ventilation vs conventional ventilation, on postoperative pulmonary complications after cardiopulmonary bypass

2017 ◽  
Vol 9 (4) ◽  
pp. 221-228 ◽  
Author(s):  
Mohammad Mahdi Zamani ◽  
Atabak Najafi ◽  
Saloomeh Sehat ◽  
Zinat Janforooz ◽  
Pooya Derakhshan ◽  
...  
JAMA ◽  
2017 ◽  
Vol 317 (14) ◽  
pp. 1422 ◽  
Author(s):  
Alcino Costa Leme ◽  
Ludhmila Abrahao Hajjar ◽  
Marcia S. Volpe ◽  
Julia Tizue Fukushima ◽  
Roberta Ribeiro De Santis Santiago ◽  
...  

2021 ◽  
Vol 134 (4) ◽  
pp. 562-576
Author(s):  
Douglas A. Colquhoun ◽  
Aleda M. Leis ◽  
Amy M. Shanks ◽  
Michael R. Mathis ◽  
Bhiken I. Naik ◽  
...  

Background Protective ventilation may improve outcomes after major surgery. However, in the context of one-lung ventilation, such a strategy is incompletely defined. The authors hypothesized that a putative one-lung protective ventilation regimen would be independently associated with decreased odds of pulmonary complications after thoracic surgery. Methods The authors merged Society of Thoracic Surgeons Database and Multicenter Perioperative Outcomes Group intraoperative data for lung resection procedures using one-lung ventilation across five institutions from 2012 to 2016. They defined one-lung protective ventilation as the combination of both median tidal volume 5 ml/kg or lower predicted body weight and positive end-expiratory pressure 5 cm H2O or greater. The primary outcome was a composite of 30-day major postoperative pulmonary complications. Results A total of 3,232 cases were available for analysis. Tidal volumes decreased modestly during the study period (6.7 to 6.0 ml/kg; P < 0.001), and positive end-expiratory pressure increased from 4 to 5 cm H2O (P < 0.001). Despite increasing adoption of a “protective ventilation” strategy (5.7% in 2012 vs. 17.9% in 2016), the prevalence of pulmonary complications did not change significantly (11.4 to 15.7%; P = 0.147). In a propensity score matched cohort (381 matched pairs), protective ventilation (mean tidal volume 6.4 vs. 4.4 ml/kg) was not associated with a reduction in pulmonary complications (adjusted odds ratio, 0.86; 95% CI, 0.56 to 1.32). In an unmatched cohort, the authors were unable to define a specific alternative combination of positive end-expiratory pressure and tidal volume that was associated with decreased risk of pulmonary complications. Conclusions In this multicenter retrospective observational analysis of patients undergoing one-lung ventilation during thoracic surgery, the authors did not detect an independent association between a low tidal volume lung-protective ventilation regimen and a composite of postoperative pulmonary complications. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


2019 ◽  
Vol 131 (5) ◽  
pp. 1046-1062 ◽  
Author(s):  
Michael R. Mathis ◽  
Neal M. Duggal ◽  
Donald S. Likosky ◽  
Jonathan W. Haft ◽  
Nicholas J. Douville ◽  
...  

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background Compared with historic ventilation strategies, modern lung-protective ventilation includes lower tidal volumes (VT), lower driving pressures, and application of positive end-expiratory pressure (PEEP). The contributions of each component to an overall intraoperative protective ventilation strategy aimed at reducing postoperative pulmonary complications have neither been adequately resolved, nor comprehensively evaluated within an adult cardiac surgical population. The authors hypothesized that a bundled intraoperative protective ventilation strategy was independently associated with decreased odds of pulmonary complications after cardiac surgery. Methods In this observational cohort study, the authors reviewed nonemergent cardiac surgical procedures using cardiopulmonary bypass at a tertiary care academic medical center from 2006 to 2017. The authors tested associations between bundled or component intraoperative protective ventilation strategies (VT below 8 ml/kg ideal body weight, modified driving pressure [peak inspiratory pressure − PEEP] below 16 cm H2O, and PEEP greater than or equal to 5 cm H2O) and postoperative outcomes, adjusting for previously identified risk factors. The primary outcome was a composite pulmonary complication; secondary outcomes included individual pulmonary complications, postoperative mortality, as well as durations of mechanical ventilation, intensive care unit stay, and hospital stay. Results Among 4,694 cases reviewed, 513 (10.9%) experienced pulmonary complications. After adjustment, an intraoperative lung-protective ventilation bundle was associated with decreased pulmonary complications (adjusted odds ratio, 0.56; 95% CI, 0.42–0.75). Via a sensitivity analysis, modified driving pressure below 16 cm H2O was independently associated with decreased pulmonary complications (adjusted odds ratio, 0.51; 95% CI, 0.39–0.66), but VT below 8 ml/kg and PEEP greater than or equal to 5 cm H2O were not. Conclusions The authors identified an intraoperative lung-protective ventilation bundle as independently associated with reduced pulmonary complications after cardiac surgery. The findings offer insight into components of protective ventilation associated with adverse outcomes and may serve as targets for future prospective interventional studies investigating the impact of specific protective ventilation strategies on postoperative outcomes after cardiac surgery.


Sign in / Sign up

Export Citation Format

Share Document