one lung ventilation
Recently Published Documents


TOTAL DOCUMENTS

1199
(FIVE YEARS 258)

H-INDEX

45
(FIVE YEARS 4)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Pengyi Li ◽  
Lianbing Gu ◽  
Jing Tan ◽  
Zhenghuan Song ◽  
Qingming Bian ◽  
...  

Abstract Background Prostaglandin E1 (PGE1) has been reported to maintain adequate oxygenation among patients under 60% FiO2 one-lung ventilation (OLV). This research aimed to explore whether PGE1 is safe in pulmonary shunt and oxygenation under 40% FiO2 OLV and provide a reference concentration of PGE1. Methods Totally 90 esophageal cancer patients treated with thoracotomy were enrolled in this study, randomly divided into three groups (n = 30/group): Group A (60% FiO2 and 0.1 µg/kg PGE1), Group B (40% FiO2 and 0.1 µg/kg PGE1), and Group C (40% FiO2, 0.2 µg/kg PGE1). Primary outcomes were oxygenation and pulmonary shunt during OLV. Secondary outcomes included oxidative stress after OLV. Results During OLV, patients in Group C and B had lower levels of PaO2, SaO2, SpO2, MAP, and Qs/Qt than those in Group A (P < 0.05). At T2 (OLV 10 min), patients in Group C and B exhibited a lower level of PaO2/FiO2 than those in Group A, without any statistical difference at other time points. The IL-6 levels of patients in different groups were different at T8 (F = 3.431, P = 0.038), with IL-6 in Group C being lower than that in Group B and A. MDA levels among the three groups differed at T5 (F = 4.692, P = 0.012) and T7 (F = 5.906, P = 0.004), with the MDA level of Group C being lower than that of Group B and A at T5, and the MDA level of Group C and B being lower than that of Group A at T7. In terms of TNF-α level, patients in Group C had a lower level than those in Group B and A at T8 (F = 3.598, P = 0.033). Compared with patients who did not use PGE1, patients in Group C had comparable complications and lung infection scores. Conclusion The concentration of FiO2 could be reduced from 60 to 40% to maintain oxygenation. 40% FiO2 + 0.2 µg/kg PGE1 is recommended as a better combination on account of its effects on the inflammatory factors. Trial registration: Chictr.org.cn identifier: ChiCTR1800018288, 09/09/2018.


2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Jing Luo ◽  
Qingjie Ma ◽  
Heng Tang ◽  
Xi Zou ◽  
Xin Guo ◽  
...  

Background. Mechanical ventilation (MV) can provoke acute lung injury (ALI) by increasing inflammation activation and disrupting the barrier in lung tissues even causing death. However, the inflammation-related molecules and pathways in MV-induced ALI remain largely unknown. Hence, the purposes of this study are to examine the role and mechanism of a novel inflammation-related molecule, leukotriene B4 (LTB4), in ALI. Methods. The functions of LTB4 in one-lung ventilation (OLV) model were detected by the loss-of-function experiments. H&E staining was used to examine the pathologic changes of lung tissues. Functionally, PLCε-1 knockdown and Toll-like receptor 4 (TLR4)/NF-κB pathway inhibitor were used to detect the regulatory effects of LTB4 on the phospholipase Cε (PLCε-1)/TLR4/nuclear factor-kappa B (NF-κB) pathway. The levels of genes and proteins were determined by RT-qPCR and western blotting assay. The levels of inflammation cytokines and chemokines were measured by ELISA. Results. Here, we found LTA4H, leukotriene B (4) receptor 1 (BLT1), LTB4, and PLCε-1 upregulated in OLV rats and associated with inflammatory activation and lung permeability changes of lung tissues. Inhibition of LTB4 alleviated the OLV-induced ALI by inhibiting inflammatory activation and lung permeability changes of lung tissues. For mechanism analyses, LTB4 promoted OLV-induced ALI by activating the PLCε-1/TLR4/NF-κB pathway. Conclusion. LTB4 induced ALI in OLV rats by activating the PLCε-1/TLR4/NF-κB pathway. Our findings might supply a new potential therapeutic for OLV-induced ALI.


Author(s):  
Mijung Yun ◽  
Gunn Hee Kim ◽  
Sung-chul Ko ◽  
Yun Jae Han ◽  
Wooshik Kim

Background: Myasthenia gravis (MG) is an autoimmune disease, and early thymectomy is recommended. Since the introduction of video-assisted thoracoscopic surgery, the safety and effectiveness of carbon dioxide insufflation in the thoracic cavity (capnothorax) has been controversial. This study aimed to compare the safety and effectiveness of ventilation methods in bilateral video-assisted thoracoscopic extended thymectomy (BVET) with capnothorax.Methods: We retrospectively investigated the medical records of patients with MG who underwent BVET between August 2016 and January 2018. Patients were divided into two groups: group D (n = 26) for one-lung ventilation and group S (n = 28) for two-lung ventilation. We set nine anesthesia time points (T0–T8) and collected respiratory and hemodynamic variables, including arterial O2 index (PaO2/FiO2).Results: SpO2 at T1–T3 and T8 was significantly lower in group D than in group S. The FiO2 in group S was lower than that in group D at all time points. The number of PaO2/FiO2 ≤ 300 and PaO2/FiO2 ≤ 200 events was significantly higher in group D than in group S. Hemodynamic variables were not significantly different between the two groups at any time point. The duration of surgery and anesthesia was shorter in group S than in group D. Conclusions: This retrospective study suggests that anesthesia using two-lung ventilation during BVET with capnothorax is a safe and effective method to improve lung oxygenation and reduce anesthesia time.


Author(s):  
Hui Jiang ◽  
Yu Kang ◽  
Chunlin Ge ◽  
Zhengying Zhang ◽  
Yan Xie

Background: To investigate the effects of different doses of dexmedetomidine on inflammatory response, oxidative stress, cerebral tissue oxygen saturation (SctO2) and intrapulmonary shunt in patients undergoing one-lung ventilation (OLV). Methods: Sixty patients undergoing open pulmonary lobectomy in our hospital from January 2016 to December 2017 were enrolled and randomly divided into high-dose dexmedetomidine group (group D1, 1 μg/kg, n=20), low-dose dexmedetomidine group (group D2, 0.5 μg/kg, n=20) and control group (group C, n=20). Then, arterial blood and internal jugular venous blood were taken before anesthesia induction (T0) and at 15 min after two-lung ventilation (T1) and 5 min (T2) and 30 min (T3) after OLV for later use. Next, the changes in hemodynamic parameters [mean arterial pressure (MAP), heart rate (HR) and pulse oxygen saturation (SpO2)] of patients were observed in each group. Enzyme-linked immunosorbent assay (ELISA) was carried out to detect serum inflammatory factors such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) and oxidative stress indicators [superoxide dismutase (SOD) and malondialdehyde (MDA)]. The changes in SctO2, arterial partial pressure of oxygen (PaO2) and intrapulmonary shunt Qs/Qt were observed. Additionally, the changes in lung function indicators like lung dynamic compliance (Cdyn) and airway peak pressure (Ppeak) were determined. Results: There were no statistically significant differences in the MAP, HR and SpO2 among three groups at each observation time point (P>0.05). At T2 and T3, the levels of serum IL-6, TNF-α and IL-8 were obviously decreased in group D1 and D2 compared with those in group C (P<0.05), and the decreases in group D1 were overtly larger than those in group D2, and the decreases at T3 were markedly greater than those at T2 (P<0.05). In comparison with group C, group D1 and D2 had notably reduced levels of serum reactive oxygen species (ROS) and MDA (P<0.05) and remarkably increased SOD content (P<0.05) at T2 and T3, and the effects were markedly better in group D1 than those in group D2. Besides, they were significantly superior at T3 to those at T2 (P<0.05). The SctO2 in group D1 and D2 was evidently lowered at T2 and T3 compared with that at T0, and the decrease in group D1 was distinctly smaller than that in group D2 (P<0.05). The Qs/Qt was significantly lower in group D1 and D2 than that in group C at T2 and T3 (P<0.05), while the PaO2 content was notably raised (P<0.05), and the decrease and increase were significantly larger in group D1 than those in group D2, and they were obviously greater at T3 to those at T2 (P<0.05). At T0 and T1, no significant differences were detected in the Cdyn, Pplat and Ppeak among three groups. At T2 and T3, the Cdyn was significantly elevated, while the Pplat and Ppeak overtly declined (P<0.05), and group D1 had greater changes in comparison with group D2, and the changes were obviously more evident at T3 to those at T2 (P<0.05). Conclusions: Dexmedetomidine effectively ameliorates inflammatory response and oxidative stress, lowers oxygenation, Qs/Qt and the decrease in SctO2 and improves lung function during OLV, with good efficacy.


2021 ◽  
Author(s):  
Hui-Ting Li ◽  
Fang Tan ◽  
Tian-Hua Zhang ◽  
Long-Hui Cao ◽  
Hong-ying Tan ◽  
...  

Abstract Background: Curcumin has attracted much attention due to its wide range of therapeutic effects. In this study, we used serum collected from patients undergoing one-lung ventilation (OLV) to establish an in vitro acute lung injury (ALI) model to explore the potential protective mechanism of curcumin on ALI to provide a new reference for the prevention and treatment of ALI induced by OLV.Methods: A549 cells were treated with 20% serum from patients undergoing OLV to establish an in vitro ALI model. Curcumin, at a dose of 40 μg/ml, was administered two hours prior to this model. The levels of inflammation and oxidative stress markers were observed by Western blot, qRT–PCR, ELISA and reactive oxygen species assay. Additionally, the expression of peroxiredoxin 6 (Prdx6) and proteins involved in the NF-κB signaling pathway were evaluated.Results: Twenty percent of serum collected from patients undergoing OLV downregulated the expression of Prdx6, leading to the activation of the NF-κB signaling pathway, which was associated with the subsequent overproduction of inflammatory cytokines and reactive oxygen species. Pretreatment with curcumin restored Prdx6 downregulation and inhibited NF-κB pathway activation by suppressing the nuclear translocation of P65, eventually reducing inflammation and oxidative stress damage in A549 cells.Conclusions: Prdx6 mediated the protective function of curcumin by inhibiting the activation of the NF-κB pathway in ALI in vitro.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuta Sato ◽  
Yoshihiro Tanaka ◽  
Tomonari Suetsugu ◽  
Ritsuki Takaha ◽  
Hidenori Ojio ◽  
...  

Abstract Background The development of esophago-bronchial fistula after esophagectomy and reconstruction using a posterior mediastinal gastric tube remains a rare complication associated with a high rate of mortality. Case presentation A 63-year-old man with esophageal cancer underwent a thoracoscopic esophagectomy with two-field lymph node dissection and reconstruction via a gastric tube through the posterior mediastinal route. Postoperatively, the patient developed extensive pyothorax in the right lung due to port site bleeding and hematoma infection. Four months after surgery, he developed an esophago-left bronchial fistula due to ischemia of the cervical esophagus and severe reflux esophagitis at the site of the anastomosis. Because of respiratory failure due to the esophago-bronchial fistula and the history of extensive right pyothorax, right thoracotomy and left one-lung ventilation were thought to be impossible, so we decided to perform the surgery in three-step systematically. First, we inserted a decompression catheter and feeding tube into the gastric tube as a gastrostomy and expected neovascularization to develop from the wall of the gastric tube through the anastomosis after this procedure. Second, 14 months after esophagectomy, we constructed an esophagostomy after confirming blood flow in the distal side of the cervical esophagus via gastric tube using intraoperative indocyanine green-guided blood flow evaluation. In the final step, we closed the esophagostomy and performed a cervical esophago-jejunal anastomosis to restore esophageal continuity using a pedicle jejunum in a Roux-en-Y anastomosis via a subcutaneous route. Conclusion This three-step operation can be an effective procedure for patients with esophago-left bronchial fistula after esophagectomy, especially those with respiratory failure and difficulty in undergoing right thoracotomy with left one-lung ventilation.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gonul Sagiroglu ◽  
Ayse Baysal ◽  
Yekta Altemur Karamustafaoglu

Abstract Background Our goal is to investigate the use of the oxygen reserve index (ORi) to detect hypoxemia and its relation with parameters such as; peripheral oxygen saturation, perfusion index (PI), and pleth variability index (PVI) during one-lung ventilation (OLV). Methods Fifty patients undergoing general anesthesia and OLV for elective thoracic surgeries were enrolled in an observational cohort study in a tertiary care teaching hospital. All patients required OLV after a left-sided double-lumen tube insertion during intubation. The definition of hypoxemia during OLV is a peripheral oxygen saturation (SpO2) value of less than 95%, while the inspired oxygen fraction (FiO2) is higher than 50% on a pulse oximetry device. ORi, pulse oximetry, PI, and PVI values were measured continuously. Sensitivity, specificity, positive and negative predictive values, likelihood ratios, and accuracy were calculated for ORi values equal to zero in different time points during surgery to predict hypoxemia. At Clinicaltrials.gov registry, the Registration ID is NCT05050552. Results Hypoxemia was observed in 19 patients (38%). The accuracy for predicting hypoxemia during anesthesia induction at ORi value equals zero at 5 min after intubation in the supine position (DS5) showed a sensitivity of 92.3% (95% CI 84.9–99.6), specificity of 81.1% (95% CI 70.2–91.9), and an accuracy of 84.0% (95% CI 73.8–94.2). For predicting hypoxemia, ORi equals zero show good sensitivity, specificity, and statistical accuracy values for time points of DS5 until OLV30 where the sensitivity of 43.8%, specificity of 64%, and an accuracy of 56.1% were recorded. ORi and SpO2 correlation was found at DS5, 5 min after lateral position with two-lung ventilation (DL5) and at 10 min after OLV (OLV10) (p = 0.044, p = 0.039, p = 0.011, respectively). Time-dependent correlations also showed that; at a time point of DS5, ORi has a significant negative correlation with PI whereas, no correlations with PVI were noted. Conclusions During the use of OLV for thoracic surgeries, from 5 min after intubation (DS5) up to 30 min after the start of OLV, ORi provides valuable information in predicting hypoxemia defined as SpO2 less than 95% on pulse oximeter at FiO2 higher than 50%.


Sign in / Sign up

Export Citation Format

Share Document