scholarly journals Analysis of Emotion Evoking Product Cases Using a Physical Movement Component Analysis Model

2021 ◽  
Vol 34 (4) ◽  
pp. 69-85
Author(s):  
Yoona Jeon ◽  
Yoona Jeon ◽  
Eui-Chul Jung ◽  
Eui-Chul Jung
2011 ◽  
Vol 50-51 ◽  
pp. 728-732
Author(s):  
Ping Li ◽  
Ming Ying Zhuo ◽  
Li Chao Feng ◽  
Rui Zhang

Non-performance loan ratio is one of the important assessment criteria of the security of credit assets. It is also an important financial indicator to evaluate the general strength of commercial banks. Using principal component analysis method and statistical software SPSS16.0 and based on the non-performance loan ratio and relative data of some commercial banks in China in 2007, this paper provided a principal component analysis model for the non-performance loan ratio of China’s commercial banks. The factors that affect the non-performance loan ratio were refined in this paper. Finally, the characteristics of effect factors of each bank were analyzed and compared in detail.


2011 ◽  
Vol 204-210 ◽  
pp. 470-475
Author(s):  
Feng Zhao ◽  
Yun Jie Zhang ◽  
Min Cai

Maximum likelihood estimation is a very popular method to estimate the independent component analysis model because of good performance. Independent component analysis algorithm (the natural gradient method) based on this method is widely used in the field of blind signal separation. It potentially assumes that the source signal was symmetrical distribution, in fact in practical applications, source signals may be asymmetric. This article by distinguishing that the source signal is symmetrical or asymmetrical, proposes an improved natural gradient method based on symmetric generalized Gaussian model (People usually call generalized Gaussian model) and asymmetric generalized Gaussian model. The random mixed-signal simulation results show that the improved algorithm is better than the natural gradient separation method.


2020 ◽  
Author(s):  
Weiguang Mao ◽  
Maziyar Baran Pouyan ◽  
Dennis Kostka ◽  
Maria Chikina

AbstractMotivationSingle cell RNA sequencing (scRNA-seq) enables transcriptional profiling at the level of individual cells. With the emergence of high-throughput platforms datasets comprising tens of thousands or more cells have become routine, and the technology is having an impact across a wide range of biomedical subject areas. However, scRNA-seq data are high-dimensional and affected by noise, so that scalable and robust computational techniques are needed for meaningful analysis, visualization and interpretation. Specifically, a range of matrix factorization techniques have been employed to aid scRNA-seq data analysis. In this context we note that sources contributing to biological variability between cells can be discrete (or multi-modal, for instance cell-types), or continuous (e.g. pathway activity). However, no current matrix factorization approach is set up to jointly infer such mixed sources of variability.ResultsTo address this shortcoming, we present a new probabilistic single-cell factor analysis model, Non-negative Independent Factor Analysis (NIFA), that combines features of complementary approaches like Independent Component Analysis (ICA), Principal Component Analysis (PCA), and Non-negative Matrix Factorization (NMF). NIFA simultaneously models uni- and multi-modal latent factors and can so isolate discrete cell-type identity and continuous pathway-level variations into separate components. Similar to NMF, NIFA constrains factor loadings to be non-negative in order to increase biological interpretability. We apply our approach to a range of data sets where cell-type identity is known, and we show that NIFA-derived factors outperform results from ICA, PCA and NMF in terms of cell-type identification and biological interpretability. Studying an immunotherapy dataset in detail, we show that NIFA identifies biomedically meaningful sources of variation, derive an improved expression signature for regulatory T-cells, and identify a novel myeloid cell subtype associated with treatment response. Overall, NIFA is a general approach advancing scRNA-seq analysis capabilities and it allows researchers to better take advantage of their data. NIFA is available at https://github.com/wgmao/[email protected]


Author(s):  
Bingxian Leng ◽  
Yunfei Fu ◽  
Siyuan Li

This paper mainly uses the idea of pedigree clustering analysis, gray prediction and principal component analysis. The clustering analysis model, GM (1,1) model and principal component analysis model were established by using SPSS software to analyze the correlation matrices and principal component analysis. MATLAB software was used to calculate the correlation matrices. In January, The difference in price changes of major food prices in cities is calculated, and had forecasted the various food prices in June 2016. For the first issue, the main food is classified and the data are processed. After that, the SPSS software is used to classify the 27 kinds of food into four categories by using the pedigree cluster analysis model and the system clustering. The four categories are made by EXCEL. The price of food changes over time with a line chart that analyzes the characteristics of food price volatility. For the second issue, the gray prediction model is established based on the food classification of each kind of food price. First, the original data is cumulated, test and processed, so that the data have a strong regularity, and then establish a gray differential equation, and then use MATLAB software to solve the model. And then the residual test and post-check test, have C <0.35, the prediction accuracy is better. Finally, predict the price trend in June 2016 through the function. For the third issue, we analyzed the main components of 27 kinds of food types by celery, octopus, chicken (white striped chicken), duck and Chinese cabbage by using the data of principal given and analyzed by principal component analysis. It can be detected by measuring a small amount of food, this predict CPI value relatively accurate. Through the study of the characteristics of the region, select Shanghai and Shenyang, by looking for the relevant CPI and food price data, using spss software, principal component analysis, the impact of the CPI on several types of food, and then calculated by matlab algorithm weight, and then the data obtained by the analysis and comparison, different regions should be selected for different types of food for testing.


Sign in / Sign up

Export Citation Format

Share Document