Test Method for Density, Absorption, and Voids in Hardened Concrete

2021 ◽  
Author(s):  
2018 ◽  
Vol 163 ◽  
pp. 07001
Author(s):  
Lucyna Domagała ◽  
Justyna Dobrowolska

The paper focuses on the influence of the standard test method applied to determine the concrete stabilized secant modulus on a specified value. The new European Standard EN 12390-13 for testing hardened concrete accepts two methods (A and B) for the determination of the secant modulus of elasticity in compression. The aim of the research was to establish how different testing procedures affect a measured value of modulus of elasticity. Four structural concrete series: two lightweight aggregate concretes and two normal-weight ones were subject to tests of moduli of elasticity determined by both standard methods, as well as compressive strength and density. The carried out tests revealed that the procedure of testing modulus of elasticity influenced a measured value. Method A led to higher values of modulus in relation to Method B, irrespective of concrete density and strength. Nevertheless, a certain relationship between the concrete structure homogeneity and the difference in results of moduli determined by both methods may be observed.


1996 ◽  
Vol 23 (5) ◽  
pp. 1118-1128 ◽  
Author(s):  
François Saucier ◽  
Richard Pleau ◽  
Daniel Vézina

Since 1993, the Quebec Department of Transportation requires all its concrete suppliers to demonstrate that their concrete satisfies the requirements of the CSA A23.1 standard as regards the maximum spacing factor of the air void system. This new requirement raises questions about the reproducibility of the ASTM C 457 test method. An interlaboratory study was carried out to verify if the variability of the test method is sufficiently low to allow reliable decisions on the acceptance or rejection of in-place hardened concrete. A total of 18 operators from 13 different laboratories microscopically examined the six concrete slabs used for the study. It is concluded that the average reproducibility coefficient of variation is 14.4% for the total air content measurement and 14.2% for the spacing factor measurement. Considering these results, the probability that the measured value of the spacing factor exceeds the mandatory limit of 230 μm on a concrete production containing an air void system with a spacing factor of 170 μm (the target value proposed in the CSA A23.1 M-94 standard) is less than 0.7% (a probability of error of about 1%, 5%, or 10% is typical of most quality control test methods). Key words: concrete, air content, air void measurement, spacing factor, ASTM C 457 standard, interlaboratory study, freeze–thaw durability.


Sign in / Sign up

Export Citation Format

Share Document