A Simple Calculation of Strain-Energy Release Rate for a Nonlinear Double Cantilever Beam

1985 ◽  
Vol 7 (2) ◽  
pp. 64 ◽  
Author(s):  
WW Feng ◽  
KL Reifsnider ◽  
GP Sendeckyj ◽  
TT Chiao ◽  
WS Johnson ◽  
...  
2021 ◽  
Vol 15 (56) ◽  
pp. 229-239
Author(s):  
Amina Mohamed Ben Ali ◽  
Salah Bouziane ◽  
Hamoudi Bouzerd

The use of composite materials is on the rise in different engineering fields, the main advantage of these materials for the aerospace industry is their low weight for excellent mechanical qualities. The analysis of failure modes, such as delamination, of these materials has received great attention from researchers. This paper proposes a method to evaluate the mode I Strain Energy Release Rate (SERR) of sandwich structures. This method associated a two-dimensional mixed finite element with virtual crack extension technique for the analysis of interfacial delamination of sandwich beams. A symmetrical Double Cantilever Beam (DCB) and asymmetrical Double Cantilever Beam (UDCB) have been analyzed in this study.  The comparison of the results obtained by this method and those found in the literature shows efficiency and good precision for the calculation of Strain Energy Release Rate (SERR).


2012 ◽  
Vol 152-154 ◽  
pp. 1417-1426 ◽  
Author(s):  
Xiang Fang Li ◽  
Bao Lin Wang

Using the nonlocal elasticity theory, this paper presents a static analysis of a microbeam according to the Timoshenko beam model. A fourth-order governing differential equation is derived and a general solution is suggested. For a cantilever beam at nanoscale subjected to uniform distributed loading, explicit expressions for deflection, rotation and strain energy are obtained. The nonlocal effect decreases the deflection and maximum stress distribution. With a double cantilever beam model, the strain energy release rate of a cracked beam is evaluated, and the results obtained show that the strain energy release rate is decreased (hence an increased apparent fracture toughness is measured) when the beam thickness is several times the material characteristic length. However, in the absence of a uniformly distributed loading, the nonlocal beam theory fails to account for the size-dependent properties for static analysis. Particularly, the nonlocal Euler-Bernoulli beam can be analytically obtained from the nonlocal Timoshenko beam if the apparent shear modulus is sufficiently large.


1964 ◽  
Vol 86 (4) ◽  
pp. 693-697 ◽  
Author(s):  
R. G. Forman ◽  
A. S. Kobayashi

This paper presents theoretical studies on the axial rigidities in strips with circular and elliptical perforations and subjected to uniaxial tension. Greenspan’s original derivations on these axial rigidities [2] were improved by using the elasticity solutions by Howland [6] and Ishida [7] for infinite strips with circular and elliptical perforations, respectively. Finally, the correction factors for centrally notched strips subjected to uniaxial tension were rederived from the above results following the energy approach by Irwin and Kies [3].


Sign in / Sign up

Export Citation Format

Share Document