Nonlinear Curve-Fitting Procedures for Developing Soil-Water Characteristic Curves

2006 ◽  
Vol 29 (5) ◽  
pp. 14104 ◽  
Author(s):  
L David Suits ◽  
TC Sheahan ◽  
S Sreedeep ◽  
DN Singh
2013 ◽  
Vol 67 (8) ◽  
pp. 1740-1747 ◽  
Author(s):  
Shiyu Liu ◽  
Noriyuki Yasufuku ◽  
Qiang Liu ◽  
Kiyoshi Omine ◽  
Hazarika Hemanta

In the last decades several approaches have been developed to describe bimodal or multimodal soil-water characteristic curves (SWCCs). Unfortunately, most of these models were derived empirically. In the presented study, physically based bimodal and multimodal SWCC functions have been developed for structural soils. The model involved two or more continual pore series; the probability density functions for each pore series were assumed to be lognormal distribution and can be superposed to obtain the overall probability density function of the structural soils. The proposed functions were capable of simulating bimodal or multimodal SWCCs using parameters which can be related to physical properties of the structural soils. The experimental SWCC data were used to verify the proposed method. The fitting results showed that the proposed approaches resulted in good agreement between measurement and simulation. These functions can potentially be used as effective tools for indentifying hydraulic porosities in the structural mediums.


1987 ◽  
Vol 33 (2) ◽  
pp. 278-285 ◽  
Author(s):  
H L Pardue ◽  
B L Bacon ◽  
M G Nevius ◽  
J W Skoug

Abstract We studied the kinetic behavior of the reaction of alkaline picrate and creatinine and evaluated a nonlinear curve-fitting method for quantifying creatinine in serum. Using a 3 X 3 factorial experimental design, we evaluated interactive effects among temperature and concentrations of creatinine, picrate, and NaOH. We found no evidence of interference by glucose or unconjugated bilirubin; the effects of the acetoacetate reaction, which is fast, are easily compensated by the curve-fitting method. The reaction with human serum albumin is very complex, but its effects are compensated by the curve-fitting method and by preparing standards containing 50 g of albumin per liter. Calibration plots are linear under a wide variety of conditions for both aqueous standards and standard additions of creatinine to pooled serum. Reproducibility studies with standards containing creatinine at 2, 10, and 20 mg/L yielded relative standard deviations (RSD) of 8.2, 2.5, and 1.3%, corresponding to absolute variations of 0.16, 0.25, and 0.26 mg/L. The average SD for 17 sera containing creatinine at 15-50 mg/L was 0.7 mg/L. The averages of ratios (as percent) of determined vs expected concentrations in 17 sera with added creatinine (7.27 mg/L) were 97.8% for aqueous standards, 99.9% for standards with added albumin.


Sign in / Sign up

Export Citation Format

Share Document