Analysis of Material Inhomogeneity in the European Round Robin Fracture Toughness Data Set

Author(s):  
James A. Joyce ◽  
Xiaosheng Gao
2008 ◽  
Vol 5 (9) ◽  
pp. 101512 ◽  
Author(s):  
James A. Joyce ◽  
Xiaosheng Gao ◽  
Richard Neu ◽  
Kim Wallin ◽  
Steven R. Thompson ◽  
...  

Author(s):  
Tapio Planman ◽  
William Server ◽  
Kim Wallin ◽  
Stan Rosinski

The range of applicability of Master Curve testing Standard ASTM E 1921 is limited to macroscopically homogeneous steels with “uniform tensile and toughness properties”. A majority of structural steels appear to satisfy this requirement by exhibiting fracture toughness data which comply with the assumed KJc vs. temperature dependence and scatter within the specified validity area. As indicated in ASTM E 1921 a criterion for material macroscopic inhomogeneity is often applied using the 2% lower bound (possibly also the 98% upper bound). Data falling below this 2% lower-limit curve may be an indication of material inhomogeneity or susceptibility to grain boundary fracture. When this situation occurs, it is recommended to analyze the material with the so-called SINTAP procedure, which is intended for randomly inhomogeneous materials to assure a conservative lower-bound estimate. When a data set distinctly consists of two or more different data populations instead of one (due to variation of irradiation dose or specimen extraction depth, for instance) adoption of a bimodal (or a multimodal) Master Curve model is generally appropriate. These modal models provide information if the deviation of distributions is statistically significant or if different distributions truly exist for values of reference transition temperature, T0, characteristic of separate data populations. In the case of data sets representing thick-walled structures (i.e., reactor pressure vessels), indications of abnormal fracture toughness data can be encountered such that material inhomogeneity or fracture modes other than pure cleavage should be suspected. A state-of-the-art review for extended, non-standard Master Curve data and techniques highlights limits of applicability in situations where the basic ASTM E 1921 procedure is not appropriate for material homogeneity or different fracture modes.


2020 ◽  
Vol 10 (4) ◽  
pp. 173-178
Author(s):  
Alfian Nurdiansyah ◽  
Nugroho Suharto ◽  
Hudiono Hudiono

Server merupakan serbuah sistem yang memberikan layanan tertentu pada suatu jaringan komputer. Server mempunyai sistem operasi sendiri yang disebut sistem operasi jaringan. Server juga mengontrol semua akses terhadap jaringan yang ada didalamnya.  Agar membantu tugas server, dibuatlah sistem mirroring server dimana server tersebut menduplikasi sebuah data set atau tiruan persis dari sebuah server yang menyediakan berbagai informasi. Mirror server atau disebut juga sinkronisasi server merupakan duplikat dari suatu server. Untuk menambah kinerja dari server maka dibutuhkan load balancer. Load balancing adalah teknik untuk mendistribusikan internet dua jalur koneksi secara seimbang. Dengan penerapan load balancing trafik akan berjalan lebih optimal, memaksimalkan throughput dan menghindari overload pada jalur koneksi. Iptables digunakan untuk memfilter IP sehigga client mengakses server sesuai dengan zona server yang paling dekat. Sehingga load balance yang dipadukan dengan iptables dapat membuat kinerja server menjadi lebih ringan. Masalah yang sering terjadi adalah ketika banyaknya client yang mengakses sebuah server maka server akan overload dan mengakibatkan kinerja server menjadi berat karena padatnya trafik. Client yang mengakses juga mendapatkan efek dari hal tersebut yaitu akses yang lama. Dari hasil penelitian tentang perpaduan antara load balance dan iptables didapati bahwa load balance dengan algoritma round robin rata-rata delay yang didapatkan untuk server1 yaitu 0,149 detik dan 0,19122. Server2 rata-rata delay yang didapatkan 0,161 detik dan 0,012 detik.


Author(s):  
Sanjay Tiku ◽  
Nick Pussegoda ◽  
Morvarid Ghovanlou ◽  
W. R. Tyson ◽  
Aaron Dinovitzer

Fracture toughness of steels is conventionally measured using bend specimens and provides a conservative estimate of toughness when the actual loading is in tension. There has been widespread interest in characterizing the toughness that occurs with reduced constraint to better reflect constraint conditions typical of a relatively shallow girth weld flaw. There is currently a standardized approach to measure fracture toughness in tension loaded specimens, however, it requires testing of multiple specimens to generate a resistance curve. Recent developments in fracture toughness testing and analysis of tension loaded specimens have led to publications by CANMET and Exxon Mobil Upstream Research Company toward development of a single-specimen procedure. As part of an initiative to enhance the state of the art in strain based design and assessment methods, with the intent of providing support for the standardization of appropriate weld testing methods, BMT under a Pipeline research Council International (PRCI) project has combined the two single-specimen approaches and developed a recommended practice for fracture toughness testing using single-edge-notched tension SENT (or SE(T)) samples with fixed grip loading. The procedure has been assessed by means of a round robin test program involving laboratories from around the world. Girth welds were fabricated and base metal, heat affected zone and weld center line specimens were prepared and sent to round robin participants. For the round robin program all the participants used a double clip gauge arrangement for direct CTOD measurement and electric potential drop measurement or unloading compliance method for crack growth measurement. In this paper, the results of the round robin test program including comparison of J and CTOD resistance curves will be presented and discussed.


1991 ◽  
Vol 99 (1149) ◽  
pp. 417-422 ◽  
Author(s):  
Hideo AWAJI ◽  
Tatsuya YAMADA ◽  
Hiroshi OKUDA

2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Jong-Min Kim ◽  
Seok-Min Hong ◽  
Min-Chul Kim ◽  
Bong-Sang Lee

Abstract The standard master curve (MC) approach has a major limitation in that it is only applicable to homogeneous datasets. In nature, steels are macroscopically inhomogeneous. Reactor pressure vessel (RPV) steel has different fracture toughness with varying distance from the inner surface of the wall due to the higher cooling rate at the surface (deterministic material inhomogeneity). On the other hand, the T0 value itself behaves like a random parameter when the datasets have large scatter because the datasets are for several different materials (random inhomogeneity). In this paper, four regions, the surface, 1/8 T, 1/4 T, and 1/2 T, were considered for fracture toughness specimens of Korean Standard Nuclear Plant (KSNP) SA508 Gr. 3 steel to provide information on deterministic material inhomogeneity and random inhomogeneity effects. Fracture toughness tests were carried out for the four regions at three test temperatures in the transition region and the microstructure of each region was analyzed. The amount of upper bainite increased toward the center, which has a lower cooling rate; therefore, the center has lower fracture toughness than the surface so reference temperature (T0) is higher. The fracture toughness was evaluated using the bimodal master curve (BMC) approach. The results of the BMC analyses were compared with those obtained via a conventional master curve analyses. The results indicate that the bimodal master approach considering inhomogeneous materials provides a better description of scatter in the fracture toughness data than a conventional master curve analysis does.


Sign in / Sign up

Export Citation Format

Share Document