scholarly journals Acoustically driven cortical delta oscillations underpin prosodic chunking

eNeuro ◽  
2021 ◽  
pp. ENEURO.0562-20.2021
Author(s):  
JM Rimmele ◽  
D Poeppel ◽  
O Ghitza
Keyword(s):  
Brain ◽  
2021 ◽  
Author(s):  
Joel Frohlich ◽  
Daniel Toker ◽  
Martin M Monti

Abstract A common observation in EEG research is that consciousness vanishes with the appearance of delta (1 – 4 Hz) waves, particularly when those waves are high amplitude. High amplitude delta oscillations are very frequently observed in states of diminished consciousness, including slow wave sleep, anaesthesia, generalised epileptic seizures, and disorders of consciousness such as coma and vegetative state. This strong correlation between loss of consciousness and high amplitude delta oscillations is thought to stem from the widespread cortical deactivation that occurs during the “down states” or troughs of these slow oscillations. Recently, however, many studies have reported the presence of prominent delta activity during conscious states, which casts doubt on the hypothesis that high amplitude delta oscillations are an indicator of unconsciousness. These studies include work in Angelman syndrome, epilepsy, behavioural responsiveness during propofol anaesthesia, postoperative delirium, and states of dissociation from the environment such as dreaming and powerful psychedelic states. The foregoing studies complement an older, yet largely unacknowledged, body of literature that has documented awake, conscious patients with high amplitude delta oscillations in clinical reports from Rett syndrome, Lennox-Gastaut syndrome, schizophrenia, mitochondrial diseases, hepatic encephalopathy, and nonconvulsive status epilepticus. At the same time, a largely parallel body of recent work has reported convincing evidence that the complexity or entropy of EEG and magnetoencephalogram or MEG signals strongly relates to an individual’s level of consciousness. Having reviewed this literature, we discuss plausible mechanisms that would resolve the seeming contradiction between high amplitude delta oscillations and consciousness. We also consider implications concerning theories of consciousness, such as integrated information theory and the entropic brain hypothesis. Finally, we conclude that false inferences of unconscious states can be best avoided by examining measures of electrophysiological complexity in addition to spectral power.


2019 ◽  
Vol 31 (8) ◽  
pp. 1205-1215 ◽  
Author(s):  
Victor J. Boucher ◽  
Annie C. Gilbert ◽  
Boutheina Jemel

Studies that use measures of cerebro-acoustic coherence have shown that theta oscillations (3–10 Hz) entrain to syllable-size modulations in the energy envelope of speech. This entrainment creates sensory windows in processing acoustic cues. Recent reports submit that delta oscillations (<3 Hz) can be entrained by nonsensory content units like phrases and serve to process meaning—though such views face fundamental problems. Other studies suggest that delta underlies a sensory chunking linked to the processing of sequential attributes of speech sounds. This chunking associated with the “focus of attention” is commonly manifested by the temporal grouping of items in sequence recall. Similar grouping in speech may entrain delta. We investigate this view by examining how low-frequency oscillations entrain to three types of stimuli (tones, nonsense syllables, and utterances) having similar timing, pitch, and energy contours. Entrainment was indexed by “intertrial phase coherence” in the EEGs of 18 listeners. The results show that theta oscillations at central sites entrain to syllable-size elements in speech and tones. However, delta oscillations at frontotemporal sites specifically entrain to temporal groups in both meaningful utterances and meaningless syllables, which indicates that delta may support but does not directly bear on a processing of content. The findings overall suggest that, although theta entrainment relates to a processing of acoustic attributes, delta entrainment links to a sensory chunking that relates to a processing of properties of articulated sounds. The results also show that measures of intertrial phase coherence can be better suited than cerebro-acoustic coherence in revealing delta entrainment.


2017 ◽  
Vol 117 (4) ◽  
pp. 1581-1594 ◽  
Author(s):  
Andrew S. Blaeser ◽  
Barry W. Connors ◽  
Arto V. Nurmikko

Cortical systems maintain and process information through the sustained activation of recurrent local networks of neurons. Layer 5 is known to have a major role in generating the recurrent activation associated with these functions, but relatively little is known about its intrinsic dynamics at the mesoscopic level of large numbers of neighboring neurons. Using calcium imaging, we measured the spontaneous activity of networks of deep-layer medial prefrontal cortical neurons in an acute slice model. Inferring the simultaneous activity of tens of neighboring neurons, we found that while the majority showed only sporadic activity, a subset of neurons engaged in sustained delta frequency rhythmic activity. Spontaneous activity under baseline conditions was weakly correlated between pairs of neurons, and rhythmic neurons showed little coherence in their oscillations. However, we consistently observed brief bouts of highly synchronous activity that must be attributed to network activity. NMDA-mediated stimulation enhanced rhythmicity, synchrony, and correlation within these local networks. These results characterize spontaneous prefrontal activity at a previously unexplored spatiotemporal scale and suggest that medial prefrontal cortex can act as an intrinsic generator of delta oscillations. NEW & NOTEWORTHY Using calcium imaging and a novel analytic framework, we characterized the spontaneous and NMDA-evoked activity of layer 5 prefrontal cortex at a largely unexplored spatiotemporal scale. Our results suggest that the mPFC microcircuitry is capable of intrinsically generating delta oscillations and sustaining synchronized network activity that is potentially relevant for understanding its contribution to cognitive processes.


Neurosurgery ◽  
2017 ◽  
Vol 64 (CN_suppl_1) ◽  
pp. 235-235
Author(s):  
Hemmings Wu ◽  
Kai Joshua Miller ◽  
Zack Blumenfeld ◽  
Nolan Williams ◽  
Vinod Karthik Ravikumar ◽  
...  

Abstract INTRODUCTION Impulsivity is one of the most pervasive and disabling features common to many brain disorders. Heightened responsivity in the nucleus accumbens (NAc) during anticipation of rewarding stimuli predisposes to impulsivity. Electrophysiological correlates have been reported during brief windows of anticipation, which have potential to inform a novel therapeutic to deliver a time-sensitive intervention. But no available neuromodulaion therapy is capable of sensing and therapeutically responding to this vulnerable moment. The objectives of our research are: to identify biomarkers of anticipation of highly-reinforcing food reward in mouse NAc, to use these biomarkers to guide responsive neurostimulation (RNS) to suppress binge-like behavior, and to examine the effect of RNS on other behaviors, such as social interaction. METHODS Multielectrode arrays were implanted into the mouse NAc, and were put on a limited high-fat (HF) exposure protocol known to induce binge-like behavior. Power spectral density analyses of NAc local field potentials (LFPs) before HF intake were performed to identify electrophysiological biomarkers. Identical analyses were performed before house chow intake. RNS was triggered whenever potential biomarkers appeared, and reduction in HF intake induced by RNS was examined. RNS was applied during juvenile interaction test to assess behavioral specificity. RESULTS >Increased delta oscillations were observed immediately prior to HF intake after mice developed binge-like behavior, which was not detected immediately prior to chow intake. RNS utilizing delta power as biomarker significantly reduced HF intake. RNS showed no significant effect on juvenile interaction, while continuous deep brain stimulation (DBS) significantly reduced it. CONCLUSION Our findings demonstrate that NAc LFPs carry critical information relevant to reward anticipation, and have the potential to be used as an electrographic biomarker to guide RNS for neuropsychiatric disorders exhibiting impulsivity. Compared to continuous DBS, RNS has the advantage of targeting specific psychiatric symptom while potentially sparing other behaviors.


2016 ◽  
Vol 127 (1) ◽  
pp. 556-564 ◽  
Author(s):  
Kara J. Pavone ◽  
Oluwaseun Akeju ◽  
Aaron L. Sampson ◽  
Kelly Ling ◽  
Patrick L. Purdon ◽  
...  

2014 ◽  
Vol 51 (7) ◽  
pp. 658-672 ◽  
Author(s):  
Laura Prada ◽  
Francisco Barceló ◽  
Christoph S. Herrmann ◽  
Carles Escera

Sign in / Sign up

Export Citation Format

Share Document