multielectrode arrays
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 41)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Boris Botzanowski ◽  
Mary J Donahue ◽  
Malin Silvera Ejneby ◽  
Alessandro L. Gallina ◽  
Ibrahima Ngom ◽  
...  

Electrical stimulation of peripheral nerves is a cornerstone of bioelectronic medicine. Effective ways to accomplish peripheral nerve stimulation noninvasively without surgically implanted devices is enabling for fundamental research and clinical translation. Here we demonstrate how relatively high frequency sine-wave carriers (3 kHz) emitted by two pairs of cutaneous electrodes can temporally interfere at deep peripheral nerve targets. The effective stimulation frequency is equal to the offset frequency (0.5 - 4 Hz) between the two carriers. We validate this principle of temporal interference nerve stimulation (TINS) in vivo using the murine sciatic nerve model. Effective actuation is delivered at significantly lower current amplitudes than standard transcutaneous electrical stimulation. Further, we demonstrate how flexible and conformable on-skin multielectrode arrays can facilitate precise alignment of TINS onto a nerve. Our method is simple, relying on repurposing of existing clinically-approved hardware. TINS opens the possibility of precise noninvasive stimulation with depth and efficiency previously impossible with transcutaneous techniques.


2021 ◽  
Vol 349 ◽  
pp. 130812
Author(s):  
Gabriela Figueroa-Miranda ◽  
Song Chen ◽  
Marc Neis ◽  
Lei Zhou ◽  
Yuting Zhang ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Steven Schulte ◽  
Manuela Gries ◽  
Anne Christmann ◽  
Karl-Herbert Schäfer

Abstract Background Multielectrode arrays are widely used to analyze the effects of potentially toxic compounds, as well as to evaluate neuroprotective agents upon the activity of neural networks in short- and long-term cultures. Multielectrode arrays provide a way of non-destructive analysis of spontaneous and evoked neuronal activity, allowing to model neurodegenerative diseases in vitro. Here, we provide an overview on how these devices are currently used in research on the amyloid-β peptide and its role in Alzheimer’s disease, the most common neurodegenerative disorder. Main body: Most of the studies analysed here indicate fast responses of neuronal cultures towards aggregated forms of amyloid-β, leading to increases of spike frequency and impairments of long-term potentiation. This in turn suggests that this peptide might play a crucial role in causing the typical neuronal dysfunction observed in patients with Alzheimer’s disease. Conclusions Although the number of studies using multielectrode arrays to examine the effect of the amyloid-β peptide onto neural cultures or whole compartments is currently limited, they still show how this technique can be used to not only investigate the interneuronal communication in neural networks, but also making it possible to examine the effects onto synaptic currents. This makes multielectrode arrays a powerful tool in future research on neurodegenerative diseases.


2021 ◽  
Author(s):  
Chad O. Brown ◽  
Jarryll Uy ◽  
Nadeem Murtaza ◽  
Elyse Rosa ◽  
Alexandria Afonso ◽  
...  

SCN2A is an autism spectrum disorder (ASD) risk gene and encodes a voltage-gated sodium channel. However, the impact of autism-associated SCN2A de novo variants on human neuron development is unknown. We studied SCN2A using isogenic SCN2A-/- induced pluripotent stem cells (iPSCs), and patient-derived iPSCs harboring a p.R607* or a C-terminal p.G1744* de novo truncating variant. We used Neurogenin2 to generate excitatory glutamatergic neurons and found that SCN2A+/p.R607* and SCN2A-/- neurons displayed a reduction in synapse formation and excitatory synaptic activity using multielectrode arrays and electrophysiology. However, the p.G1744* variant, which leads to early-onset seizures in addition to ASD, altered action-potential dynamics but not synaptic activity. Proteomic and functional analysis of SCN2A+/p.R607* neurons revealed defects in neuronal morphology and bioenergetic pathways, which were not present in SCN2A+/p.G1744* neurons. Our study reveals that SCN2A de novo variants can have differential impact on human neuron function and signaling.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 3004
Author(s):  
Nadya Stankova ◽  
Anastas Nikolov ◽  
Ekaterina Iordanova ◽  
Georgi Yankov ◽  
Nikolay Nedyalkov ◽  
...  

We report on a new approach toward a laser-assisted modification of biocompatible polydimethylsiloxane (PDMS) elastomers relevant to the fabrication of stretchable multielectrode arrays (MEAs) devices for neural interfacing technologies. These applications require high-density electrode packaging to provide a high-resolution integrating system for neural stimulation and/or recording. Medical grade PDMS elastomers are highly flexible with low Young’s modulus < 1 MPa, which are similar to soft tissue (nerve, brain, muscles) among the other known biopolymers, and can easily adjust to the soft tissue curvatures. This property ensures tight contact between the electrodes and tissue and promotes intensive development of PDMS-based MEAs interfacing devices in the basic neuroscience, neural prosthetics, and hybrid bionic systems, connecting the human nervous system with electronic or robotic prostheses for restoring and treating neurological diseases. By using the UV harmonics 266 and 355 nm of Nd:YAG laser medical grade PDMS elastomer is modified by ns-laser ablation of in water. A new approach of processing is proposed to (i) activate the surface and to obtain tracks with (ii) symmetric U-shaped profiles and (iii) homogeneous microstructure This technology provides miniaturization of the device and successful functionalization by electroless metallization of the tracks with platinum (Pt) without preliminary sensitization by tin (Sn) and chemical activation by palladium (Pd). As a result, platinum black layers with a cauliflower-like structure with low values of sheet resistance between 1 and 8 Ω/sq are obtained.


2021 ◽  
Vol 22 (16) ◽  
pp. 8588
Author(s):  
Alice Abend ◽  
Chelsie Steele ◽  
Heinz-Georg Jahnke ◽  
Mareike Zink

Coupling of cells to biomaterials is a prerequisite for most biomedical applications; e.g., neuroelectrodes can only stimulate brain tissue in vivo if the electric signal is transferred to neurons attached to the electrodes’ surface. Besides, cell survival in vitro also depends on the interaction of cells with the underlying substrate materials; in vitro assays such as multielectrode arrays determine cellular behavior by electrical coupling to the adherent cells. In our study, we investigated the interaction of neurons and glial cells with different electrode materials such as TiN and nanocolumnar TiN surfaces in contrast to gold and ITO substrates. Employing single-cell force spectroscopy, we quantified short-term interaction forces between neuron-like cells (SH-SY5Y cells) and glial cells (U-87 MG cells) for the different materials and contact times. Additionally, results were compared to the spreading dynamics of cells for different culture times as a function of the underlying substrate. The adhesion behavior of glial cells was almost independent of the biomaterial and the maximum growth areas were already seen after one day; however, adhesion dynamics of neurons relied on culture material and time. Neurons spread much better on TiN and nanocolumnar TiN and also formed more neurites after three days in culture. Our designed nanocolumnar TiN offers the possibility for building miniaturized microelectrode arrays for impedance spectroscopy without losing detection sensitivity due to a lowered self-impedance of the electrode. Hence, our results show that this biomaterial promotes adhesion and spreading of neurons and glial cells, which are important for many biomedical applications in vitro and in vivo.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Dongxin Xu ◽  
Jingshan Mo ◽  
Xi Xie ◽  
Ning Hu

AbstractEstablishing a reliable electrophysiological recording platform is crucial for cardiology and neuroscience research. Noninvasive and label-free planar multitransistors and multielectrode arrays are conducive to perform the large-scale cellular electrical activity recordings, but the signal attenuation limits these extracellular devices to record subthreshold activities. In recent decade, in-cell nanoelectronics have been rapidly developed to open the door to intracellular electrophysiology. With the unique three-dimensional nanotopography and advanced penetration strategies, high-throughput and high-fidelity action potential like signal recordings is expected to be realized. This review summarizes in-cell nanoelectronics from versatile nano-biointerfaces, penetration strategies, active/passive nanodevices, systematically analyses the applications in electrogenic cells and especially evaluates the influence of nanodevices on the high-quality intracellular electrophysiological signals. Further, the opportunities, challenges and broad prospects of in-cell nanoelectronics are prospected, expecting to promote the development of in-cell electrophysiological platforms to meet the demand of theoretical investigation and clinical application."Image missing"


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Y. M. Wang ◽  
Vickie H. Y. Wong ◽  
Pei Ying Lee ◽  
Bang V. Bui ◽  
Stefanie Dudczig ◽  
...  

AbstractThere is increasing evidence for the vulnerability of specific retinal ganglion cell (RGC) types in those with glaucoma and in animal models. In addition, the P2X7-receptor (P2X7-R) has been suggested to contribute to RGC death following stimulation and elevated IOP, though its role in RGC dysfunction prior to death has not been examined. Therefore, we examined the effect of an acute, non-ischemic intraocular pressure (IOP) insult (50 mmHg for 30 min) on RGC function in wildtype mice and P2X7-R knockout (P2X7-KO) mice. We examined retinal function using electroretinogram recordings and individual RGC responses using multielectrode arrays, 3 days following acute IOP elevation. Immunohistochemistry was used to examine RGC cell death and P2X7-R expression in several RGC types. Acute intraocular pressure elevation produced pronounced dysfunction in RGCs; whilst other retinal neuronal responses showed lesser changes. Dysfunction at 3 days post-injury was not associated with RGC loss or changes in receptive field size. However, in wildtype animals, OFF-RGCs showed reduced spontaneous and light-elicited activity. In the P2X7-KO, both ON- and OFF-RGC light-elicited responses were reduced. Expression of P2X7-R in wildtype ON-RGC dendrites was higher than in other RGC types. In conclusion, OFF-RGCs were vulnerable to acute IOP elevation and their dysfunction was not rescued by genetic ablation of P2X7-R. Indeed, knockout of P2X7-R also caused ON-RGC dysfunction. These findings aid our understanding of how pressure affects RGC function and suggest treatments targeting the P2X7-R need to be carefully considered.


Author(s):  
L Saavedra ◽  
K Wallace ◽  
Tf Freudenrich ◽  
M Mall ◽  
Wr Mundy ◽  
...  

Abstract Assessment of neuroactive effects of chemicals in cell-based assays remains challenging as complex functional tissue is required for biologically relevant readouts. Recent in vitro models using rodent primary neural cultures grown on multielectrode arrays (MEAs) allow quantitative measurements of neural network activity suitable for neurotoxicity screening. However, robust systems for testing effects on network function in human neural models are still lacking. The increasing number of differentiation protocols for generating neurons from human induced pluripotent stem cells (hiPSCs) holds great potential to overcome the unavailability of human primary tissue and expedite cell-based assays. Yet, the variability in neuronal activity, prolonged ontogeny and rather immature stage of most neuronal cells derived by standard differentiation techniques greatly limit their utility for screening neurotoxic effects on human neural networks. Here, we used excitatory and inhibitory neurons, separately generated by direct reprogramming from hiPSCs, together with primary human astrocytes to establish highly functional cultures with defined cell ratios. Such neuron/glia co-cultures exhibited pronounced neuronal activity and robust formation of synchronized network activity on MEAs, albeit with noticeable delay compared to primary rat cortical cultures. We further investigated acute changes of network activity in human neuron/glia co-cultures and rat primary cortical cultures in response to compounds with known adverse neuroactive effects, including GABAA receptor antagonists and multiple pesticides. Importantly, we observed largely corresponding concentration-dependent effects on multiple neural network activity metrics using both neural culture types. These results demonstrate the utility of directly converted neuronal cells from hiPSCs for functional neurotoxicity screening of environmental chemicals.


Sign in / Sign up

Export Citation Format

Share Document