deep brain
Recently Published Documents


TOTAL DOCUMENTS

11286
(FIVE YEARS 3121)

H-INDEX

160
(FIVE YEARS 22)

2022 ◽  
Vol 3 (1) ◽  
pp. 101054
Author(s):  
Qi Wang ◽  
Bin Tang ◽  
Jianrong Tang

Author(s):  
V Rama Raju

This study discusses the various procedures and issues involved in the acquisition of microelectrode recordings (MER) signals of subthalamic nucleus stimulations with induced deep brain stimulation electrodes very rigorously. Bellicose-invasive physiological detections through the methods of sub cortical physio logical detections, electrical induced stimulations and micro electrode recordings, stereo-tactic technique, macro-stimulation, stereo-tactic functional neurosurgical technique, stimulations such as macro and micro, induced stimuli with current and microelectrode recordings, impedance information monitoring, micro injections of test substances, evoked potentials, biomarkers/local field potentials, microelectrode fabrication methods and setups, sub cortical atlas-mapping with micro recording/microelectrode recording (M.E.R.). Thus, the study is very significant to the electrophysiological neurosurgical point of view and is very useful to the field of microelectrode recording and functional neurosurgery. This study is concerned with invasive physiological detection of deep brain structures with micro- or macro-electrodes prior to surgery followed by imaging techniques and their use in cortical and subcortical detection; detection relevant to the superficial cerebral cortex regions.


2022 ◽  
Vol 7 (4) ◽  
pp. 281-286
Author(s):  
Venkateshwarla Rama Raju

Deep brain stimulation of the subthalamic nucleus (STN) is a highly effective treatment for motor symptoms of Parkinson’s disease. Sub thalamic nucleus deep brain stimulation (STN-DBS) is a therapeutic surgical procedure for reducing the symptoms Parkinson’s and restoring and increasing the motor functioning. However, precise intraoperative edge or perimeter detection of STN remains a procedural challenge. In this study, we present the micro electrode signals recordings (MER) of STNs and local field potentials (LFPs) were acquired from deep brain stimulation macro electrodes during trajectory towards STN, in Parkinson patients. The frequency versus intensity atlas of field potential activity was obtained and further than investigated in distinct sub band’s, to explore whether field potentials activity can be employed for STN edge detection. STN perimeter detections by means of L F Ps were evaluated to edge predictions by way of the functional stereotactic DBS neurosurgeon, based on micro electrode derived, single unit recordings (M E R – S N A of S T Ns). The findings show variation amongst M E R – S N A and macro electrode L F P-signals gathering through MER-system pertaining to the d o r s a l S T N b o r d e r of -1.00±0.85mm plus -0.42±1.08 mm in the and frequencies, correspondingly. For these sub band`s, root mean square of the voids was found to be 1.27milli meters and 1.07milli meters. The Assessment of other sub band`s didn`t set a limit for differentiating the posterior (c a u d a l) point of sub-thalamic nuclei. We may infer that In conclusion, macro electrode signal acquisitions of STNs derived L F P gatherings might offer an unconventional methodology in the direction of m e r – s n a, for detecting the aimed target subthalamic nucleus borders during DBS-surgery.


2022 ◽  
Vol 15 ◽  
Author(s):  
Tao Xie ◽  
Mahesh Padmanaban ◽  
Adil Javed ◽  
David Satzer ◽  
Theresa E. Towle ◽  
...  

Tremor of the upper extremity is a significant cause of disability in some patients with multiple sclerosis (MS). The MS tremor is complex because it contains an ataxic intentional tremor component due to the involvement of the cerebellum and cerebellar outflow pathways by MS plaques, which makes the MS tremor, in general, less responsive to medications or deep brain stimulation (DBS) than those associated with essential tremor or Parkinson's disease. The cerebellar component has been thought to be the main reason for making DBS less effective, although it is not clear whether it is due to the lack of suppression of the ataxic tremor by DBS or else. The goal of this study was to clarify the effect of DBS on cerebellar tremor compared to non-cerebellar tremor in a patient with MS. By wearing an accelerometer on the index finger of each hand, we were able to quantitatively characterize kinetic tremor by frequency and amplitude, with cerebellar ataxia component on one hand and that without cerebellar component on the other hand, at the beginning and end of the hand movement approaching a target at DBS Off and On status. We found that cerebellar tremor surprisingly had as good a response to DBS as the tremor without a cerebellar component, but the function control on cerebellar tremor was not as good due to its distal oscillation, which made the amplitude of tremor increasingly greater as it approached the target. This explains why cerebellar tremor or MS tremor with cerebellar component has a poor functional transformation even with a good percentage of tremor control. This case study provides a better understanding of the effect of DBS on cerebellar tremor and MS tremor by using a wearable device, which could help future studies improve patient selection and outcome prediction for DBS treatment of this disabling tremor.


Author(s):  
Yang Wu ◽  
Yang-yang Xu ◽  
Yuan Gao ◽  
Jia-ming Li ◽  
Xiao-wei Liu ◽  
...  

Author(s):  
Andrew M. K. Nassief

Robotics systems designed for surgical applications such as Neurosurgery, likely may need to implement synchronous communication in real time and asynchronous learning. It will likely primarily be oriented towards spatial imaging and 3D virtualization, various communication protocols, and calibration settings in order to perform optimal results. In regards to computation, it needs to be heavily fault tolerant in operation. It also needs to be aware of false positives. Likely a complex deep brain surgical robotics system would implement variations of brain mapping technology and may utilize topological neuroanatomy. Various technologies in regards to the mapping of the brain, visualization, robotics and mechatronics systems would need to be in place. This paper is to look at the sciences through a theoretical and conceptual process. This isn’t FDA reviewed for medical accuracy and is meant to warrant a theoretical paper where information is “as-is”. This will hopefully provide a blueprint for continuing research later on.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jorge Morgado

AbstractThe electrical double layer (EDL) formed at the interface between various materials and an electrolyte has been studied for a long time. In particular, the EDL formed at metal/electrolyte interfaces is central in electrochemistry, with a plethora of applications ranging from corrosion to batteries to sensors. The discovery of highly conductive conjugated polymers has opened a new area of electronics, involving solution-based or solution-interfaced devices, and in particular in bioelectronics, namely for use in deep-brain stimulation electrodes and devices to measure and condition cells activity, as these materials offer new opportunities to interface cells and living tissues. Here, it is shown that the potential associated to the double layer formed at the interface between either metals or conducting polymers and electrolytes is modified by the application of an electric field along the conductive substrate. The EDL acts as a transducer of the electric field applied to the conductive substrate. This observation has profound implications in the modelling and operation of devices relying on interfaces between conductive materials (metals and conjugated polymers) and electrolytes, which encompasses various application fields ranging from medicine to electronics.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Luigi Albano ◽  
Federica Agosta ◽  
Silvia Basaia ◽  
Camilla Cividini ◽  
Tanja Stojkovic ◽  
...  

AbstractThis study aimed to identify functional neuroimaging patterns anticipating the clinical indication for deep brain stimulation (DBS) in patients with Parkinson’s disease (PD). A cohort of prospectively recruited patients with PD underwent neurological evaluations and resting-state functional MRI (RS-fMRI) at baseline and annually for 4 years. Patients were divided into two groups: 19 patients eligible for DBS over the follow-up and 41 patients who did not meet the criteria to undergo DBS. Patients selected as candidates for DBS did not undergo surgery at this stage. Sixty age- and sex-matched healthy controls performed baseline evaluations. Graph analysis and connectomics assessed global and local topological network properties and regional functional connectivity at baseline and at each time point. At baseline, network analysis showed a higher mean nodal strength, local efficiency, and clustering coefficient of the occipital areas in candidates for DBS over time relative to controls and patients not eligible for DBS. The occipital hyperconnectivity pattern was confirmed by regional analysis. At baseline, a decreased functional connectivity between basal ganglia and sensorimotor/frontal networks was found in candidates for DBS compared to patients not eligible for surgery. In the longitudinal analysis, patient candidate for DBS showed a progressively decreased topological brain organization and functional connectivity, mainly in the posterior brain networks, and a progressively increased connectivity of basal ganglia network compared to non-candidates for DBS. RS-fMRI may support the clinical indication to DBS and could be useful in predicting which patients would be eligible for DBS in the earlier stages of PD.


Sign in / Sign up

Export Citation Format

Share Document