brain disorders
Recently Published Documents


TOTAL DOCUMENTS

1322
(FIVE YEARS 490)

H-INDEX

64
(FIVE YEARS 14)

2022 ◽  
Vol 15 ◽  
Author(s):  
Ehsan Rezayat ◽  
Kelsey Clark ◽  
Mohammad-Reza A. Dehaqani ◽  
Behrad Noudoost

Neural signatures of working memory (WM) have been reported in numerous brain areas, suggesting a distributed neural substrate for memory maintenance. In the current manuscript we provide an updated review of the literature focusing on intracranial neurophysiological recordings during WM in primates. Such signatures of WM include changes in firing rate or local oscillatory power within an area, along with measures of coordinated activity between areas based on synchronization between oscillations. In comparing the ability of various neural signatures in any brain area to predict behavioral performance, we observe that synchrony between areas is more frequently and robustly correlated with WM performance than any of the within-area neural signatures. We further review the evidence for alteration of inter-areal synchrony in brain disorders, consistent with an important role for such synchrony during behavior. Additionally, results of causal studies indicate that manipulating synchrony across areas is especially effective at influencing WM task performance. Each of these lines of research supports the critical role of inter-areal synchrony in WM. Finally, we propose a framework for interactions between prefrontal and sensory areas during WM, incorporating a range of experimental findings and offering an explanation for the observed link between intra-areal measures and WM performance.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 241
Author(s):  
Florian J. Raabe ◽  
Marius Stephan ◽  
Jan Benedikt Waldeck ◽  
Verena Huber ◽  
Damianos Demetriou ◽  
...  

Oligodendrocytes (OLs) are critical for myelination and are implicated in several brain disorders. Directed differentiation of human-induced OLs (iOLs) from pluripotent stem cells can be achieved by forced expression of different combinations of the transcription factors SOX10 (S), OLIG2 (O), and NKX6.2 (N). Here, we applied quantitative image analysis and single-cell transcriptomics to compare different transcription factor (TF) combinations for their efficacy towards robust OL lineage conversion. Compared with S alone, the combination of SON increases the number of iOLs and generates iOLs with a more complex morphology and higher expression levels of myelin-marker genes. RNA velocity analysis of individual cells reveals that S generates a population of oligodendrocyte-precursor cells (OPCs) that appear to be more immature than those generated by SON and to display distinct molecular properties. Our work highlights that TFs for generating iOPCs or iOLs should be chosen depending on the intended application or research question, and that SON might be beneficial to study more mature iOLs while S might be better suited to investigate iOPC biology.


2022 ◽  
Vol 15 ◽  
Author(s):  
Ankur Gupta ◽  
Rohini Bansal ◽  
Hany Alashwal ◽  
Anil Safak Kacar ◽  
Fuat Balci ◽  
...  

Many studies on the drift-diffusion model (DDM) explain decision-making based on a unified analysis of both accuracy and response times. This review provides an in-depth account of the recent advances in DDM research which ground different DDM parameters on several brain areas, including the cortex and basal ganglia. Furthermore, we discuss the changes in DDM parameters due to structural and functional impairments in several clinical disorders, including Parkinson's disease, Attention Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorders, Obsessive-Compulsive Disorder (OCD), and schizophrenia. This review thus uses DDM to provide a theoretical understanding of different brain disorders.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 324
Author(s):  
Igor Y. Iskusnykh ◽  
Anastasia A. Zakharova ◽  
Dhruba Pathak

Glutathione is a remarkably functional molecule with diverse features, which include being an antioxidant, a regulator of DNA synthesis and repair, a protector of thiol groups in proteins, a stabilizer of cell membranes, and a detoxifier of xenobiotics. Glutathione exists in two states—oxidized and reduced. Under normal physiological conditions of cellular homeostasis, glutathione remains primarily in its reduced form. However, many metabolic pathways involve oxidization of glutathione, resulting in an imbalance in cellular homeostasis. Impairment of glutathione function in the brain is linked to loss of neurons during the aging process or as the result of neurological diseases such as Huntington’s disease, Parkinson’s disease, stroke, and Alzheimer’s disease. The exact mechanisms through which glutathione regulates brain metabolism are not well understood. In this review, we will highlight the common signaling cascades that regulate glutathione in neurons and glia, its functions as a neuronal regulator in homeostasis and metabolism, and finally a mechanistic recapitulation of glutathione signaling. Together, these will put glutathione’s role in normal aging and neurological disorders development into perspective.


2022 ◽  
Author(s):  
Zhen-Ge Luo ◽  
Xin-Yao Sun ◽  
Xiang-Chun Ju ◽  
Yang Li ◽  
Peng-Ming Zeng ◽  
...  

The recently developed brain organoids have been used to recapitulate the processes of brain development and related diseases. However, the lack of vasculatures, which regulate neurogenesis, brain disorders, and aging process, limits the utility of brain organoids. In this study, we induced vessel and brain organoids respectively, and then fused two types of organoids together to obtain vascularized brain organoids. The fused brain organoids were engrafted with robust vascular network-like structures, and exhibited increased number of neural progenitors, in line with the possibility that vessels regulate neural development. Fusion organoids also contained functional blood-brain-barrier (BBB)-like structures, as well as microglial cells, a specific population of immune cells in the brain. The incorporated microglia responded actively to immune stimuli to the fused brain organoids. Thus, the fusion organoids established in this study allow modeling interactions between the neuronal and non-neuronal components in vitro, in particular the vasculature and microglia niche.


2021 ◽  
Author(s):  
Cuihua Xia ◽  
Rujia Dai ◽  
Jing Yu ◽  
Chunling Zhang ◽  
Ma-li Wong ◽  
...  

Abstract Alternative splicing (AS) contributes to the increased cellular and functional tissue complexity that is substantial in the brain. AS is tightly regulated because it is critical to many biological processes. Defective splicing is observed in several neurological and psychiatric disorders. While exonic mutations usually affect the splicing of an individual RNA, mutations in the splicing factors (components of spliceosome) frequently produce widespread disruption in the processing of many precursor-mRNAs. Thus, we tested the hypotheses that expression changes of spliceosome genes may be a common process and shared splicing pathways may be involved in complex polygenic brain disorders. We searched for expression changes of spliceosome-related genes (SGs) using a transcriptome database of several brain regions in 6 neurological and psychiatric disorders, namely Alzheimer’s disease, and autism spectrum, bipolar and major depressive disorder, Parkinson’s disease, and schizophrenia. Out of 255 SGs detected in brain, 138 showed excessive, significant changes in one or more of these disorders. Dysregulation of 10 SGs was shared in 4 disorders, and they were mostly downregulated. Six associated pathways were over-represented in all 6 disorders, including the major and the minor mRNA splicing pathways and RNA metabolism. Therefore, we found that aberrations in the mRNA splicing process may be a common trajectory to many complex brain disorders involving the spliceosome complex.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Mitul Desai ◽  
Jitendra Sharma ◽  
Adrian L Slusarczyk ◽  
Ashley A Chapin ◽  
Robert Ohlendorf ◽  
...  

Molecular imaging could have great utility for detecting, classifying, and guiding treatment of brain disorders, but existing probes offer limited capability for assessing relevant physiological parameters. Here, we describe a potent approach for noninvasive mapping of cancer-associated enzyme activity using a molecular sensor that acts on the vasculature, providing a diagnostic readout via local changes in hemodynamic image contrast. The sensor is targeted at the fibroblast activation protein (FAP), an extracellular dipeptidase and clinically relevant biomarker of brain tumor biology. Optimal FAP sensor variants were identified by screening a series of prototypes for responsiveness in a cell-based bioassay. The best variant was then applied for quantitative neuroimaging of FAP activity in rats, where it reveals nanomolar-scale FAP expression by xenografted cells. The activated probe also induces robust hemodynamic contrast in nonhuman primate brain. This work thus demonstrates a potentially translatable strategy for ultrasensitive functional imaging of molecular targets in neuromedicine.


2021 ◽  
Author(s):  
Matthew Gray Wilson ◽  
Jan Kubanek

Selective delivery of medication into specified tissue targets would realize the promise ofpersonalized medicine with minimal side effects. Such an approach could be particularlytransformative for patients with brain disorders, in whom drugs could be released in the impairedbrain circuits at high concentration while sparing other brain regions and organs. Focusedultrasound provides noninvasive and practical means to release drugs from nanocarriers selectivelyat its target. However, which nanoparticle formulations provide safe and effective release andunder which ultrasound parameters has been unclear. To expedite regulatory approval, wetested release effectiveness from nanocarriers filled with perfluorocarbon cores of relatively highboiling points (up to 142◦C). We confirmed the safety of these nanocarriers in non-humanprimates. Crucially, we found that these safe, high-boiling-point nanocarriers can be used foreffective release so long as they are activated by ultrasound of frequencies lower than thoseused previously (300 kHz). This study informs the formulation and release parameters for safeand effective drug delivery in specific parts of the body or brain regions.


Open Medicine ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 61-69
Author(s):  
Oluwafemi Gabriel Oluwole ◽  
Kili James ◽  
Abdoulaye Yalcouye ◽  
Ambroise Wonkam

Abstract Several causative factors are associated with hearing loss (HL) and brain disorders. However, there are many unidentified disease modifiers in these conditions. Our study summarised the most common brain disorders associated with HL and highlighted mechanisms of pathologies. We searched the literature for published articles on HL and brain disorders. Alzheimer’s disease/dementia, Parkinson’s disease, cognitive impairment, autism spectrum disorder, ataxia, epilepsy, stroke, and hypoxic-ischaemic encephalopathy majorly co-interact with HL. The estimated incidence rate was 113 per 10,000 person-years. Genetic, epigenetic, early life/neonatal stress, hypoxia, inflammation, nitric oxide infiltration, endoplasmic reticulum stress, and excess glutamate were the distinguished modifiers identified. Various mechanisms like adhesion molecules, transport proteins, hair cell apoptosis, and neurodegeneration have been implicated in these conditions and are serving as potential targets for therapies. To improve the quality of life of patients, these understandings will improve clinical diagnoses and management of HL and brain disorders.


Sign in / Sign up

Export Citation Format

Share Document