scholarly journals K+ at concentrations reached in the extracellular space during neuronal activity promotes a Ca2+-dependent glycogen hydrolysis in mouse cerebral cortex

1988 ◽  
Vol 8 (6) ◽  
pp. 1922-1928 ◽  
Author(s):  
PR Hof ◽  
E Pascale ◽  
PJ Magistretti
1969 ◽  
Vol 4 (2) ◽  
pp. 437-453
Author(s):  
A. VAN HARREVELD ◽  
F. I. KHATTAB

Perfusion of the cerebral cortex of mice with a 4.5 and 12.5% hydroxyadipaldehyde (HAA) solution in a cacodylate buffer caused a biphasic change in the tissue conductivity. After a latency of a fraction of a minute the cortical conductivity dropped markedly, reaching a minimum in 1.5-2 min. Then the conductivity increased again. Electron micrographs (EMs) of material perfused with HAA for 15-20 min and post-fixed with osmium tetroxide showed electron-transparent swollen structures, some of which could be identified as dendritic. The extracellular space consisted of 100-200 Å slits between the tissue elements and larger spaces in bundles of small profiles (unmyelinated axons). Cortex frozen after 2 min perfusion with HAA and subjected to substitution in acetone containing 2 % OsO4 at -85 °C showed swollen (dendritic) structures and a paucity of extracellular material in accordance with the conductivity drop. Often tight junctions between the tissue elements were present. Tissue frozen after 15-20 min of HAA perfusion when the conductivity had increased again yielded EMs which were characterized by an abundance of extracellular space between the small profiles. The mitochondria in the swollen (dendritic) structures were enormously enlarged. Cortex perfused for 15-20 min with HAA, post-fixed with OsO4 and then freeze substituted produced EMs resembling those of tissue fixed in the same way but not subjected to freeze substitution. The examination of the fixation process by freeze substitution demonstrated a sequence of major changes in the fluid distribution of the tissue which precludes any direct relationship between the spaces in the normal and fixed tissue.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazuya Morita ◽  
Naoyuki Matsumoto ◽  
Kengo Saito ◽  
Toshihide Hamabe-Horiike ◽  
Keishi Mizuguchi ◽  
...  

AbstractAquaporin-4 (AQP4) is a predominant water channel expressed in astrocytes in the mammalian brain. AQP4 is crucial for the regulation of homeostatic water movement across the blood–brain barrier (BBB). Although the molecular mechanisms regulating AQP4 levels in the cerebral cortex under pathological conditions have been intensively investigated, those under normal physiological conditions are not fully understood. Here we demonstrate that AQP4 is selectively expressed in astrocytes in the mouse cerebral cortex during development. BMP signaling was preferentially activated in AQP4-positive astrocytes. Furthermore, activation of BMP signaling by in utero electroporation markedly increased AQP4 levels in the cerebral cortex, and inhibition of BMP signaling strongly suppressed them. These results indicate that BMP signaling alters AQP4 levels in the mouse cerebral cortex during development.


2020 ◽  
Vol 529 (4) ◽  
pp. 802-810
Author(s):  
Ragunathan Padmashri ◽  
Baiyan Ren ◽  
Braden Oldham ◽  
Yoosun Jung ◽  
Ryan Gough ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document