physiological conditions
Recently Published Documents





2022 ◽  
Taeok Bae ◽  
Bohyun Jeong ◽  
Majid Ali Shah ◽  
Eunjung Roh ◽  
Kyeong Kyu Kim ◽  

The Gram-positive pathogen Staphylococcus aureus is the only bacterium known to synthesize arginine from proline via the arginine-proline interconversion pathway, despite having genes for the well-conserved glutamate pathway. Since the proline-arginine interconversion pathway is repressed by CcpA-mediated carbon catabolite repression (CCR), CCR has been attributed to the arginine auxotrophy of S. aureus. Using ribose as a secondary carbon source, here, we demonstrate that S. aureus arginine auxotrophy is not due to CCR but due to the inadequate concentration of proline degradation product. Proline is degraded by proline dehydrogenase (PutA) into pyrroline-5-carboxylate (P5C). Although the PutA expression was fully induced by ribose, the P5C concentration remained insufficient to support arginine synthesis because P5C was constantly consumed by the P5C reductase ProC. When the P5C concentration was artificially increased by either PutA overexpression or proC-deletion, S. aureus could synthesize arginine from proline regardless of carbon source. In contrast, when the P5C concentration was reduced by overexpression of proC, it inhibited the growth of the ccpA-deletion mutant without arginine. Intriguingly, the ectopic expression of the glutamate pathway enzymes converted S. aureus into arginine prototroph. In an animal experiment, the arginine-proline interconversion pathway was not required for the survival of S. aureus. Based on these results, we concluded that S. aureus does not synthesize arginine from proline under physiological conditions. We also propose that arginine auxotrophy of S. aureus is not due to the CcpA-mediated CCR but due to the inactivity of the conserved glutamate pathway.

Vikram Ramanarayanan ◽  
Adam C. Lammert ◽  
Hannah P. Rowe ◽  
Thomas F. Quatieri ◽  
Jordan R. Green

Purpose: Over the past decade, the signal processing and machine learning literature has demonstrated notable advancements in automated speech processing with the use of artificial intelligence for medical assessment and monitoring (e.g., depression, dementia, and Parkinson's disease, among others). Meanwhile, the clinical speech literature has identified several interpretable, theoretically motivated measures that are sensitive to abnormalities in the cognitive, linguistic, affective, motoric, and anatomical domains. Both fields have, thus, independently demonstrated the potential for speech to serve as an informative biomarker for detecting different psychiatric and physiological conditions. However, despite these parallel advancements, automated speech biomarkers have not been integrated into routine clinical practice to date. Conclusions: In this article, we present opportunities and challenges for adoption of speech as a biomarker in clinical practice and research. Toward clinical acceptance and adoption of speech-based digital biomarkers, we argue for the importance of several factors such as robustness, specificity, diversity, and physiological interpretability of speech analytics in clinical applications.

2022 ◽  
Vol 12 (1) ◽  
Alba Tamargo ◽  
Natalia Molinero ◽  
Julián J. Reinosa ◽  
Victor Alcolea-Rodriguez ◽  
Raquel Portela ◽  

AbstractMicroplastics (MPs) are a widely recognized global problem due to their prevalence in natural environments and the food chain. However, the impact of microplastics on human microbiota and their possible biotransformation in the gastrointestinal tract have not been well reported. To evaluate the potential risks of microplastics at the digestive level, completely passing a single dose of polyethylene terephthalate (PET) through the gastrointestinal tract was simulated by combining a harmonized static model and the dynamic gastrointestinal simgi model, which recreates the different regions of the digestive tract in physiological conditions. PET MPs started several biotransformations in the gastrointestinal tract and, at the colon, appeared to be structurally different from the original particles. We report that the feeding with microplastics alters human microbial colonic community composition and hypothesize that some members of the colonic microbiota could adhere to MPs surface promoting the formation of biofilms. The work presented here indicates that microplastics are indeed capable of digestive-level health effects. Considering this evidence and the increasing exposure to microplastics in consumer foods and beverages, the impact of plastics on the functionality of the gut microbiome and their potential biodegradation through digestion and intestinal bacteria merits critical investigation.

2022 ◽  
Vol 23 (2) ◽  
pp. 724
Agata Gurba ◽  
Przemysław Taciak ◽  
Mariusz Sacharczuk ◽  
Izabela Młynarczuk-Biały ◽  
Magdalena Bujalska-Zadrożny ◽  

Cancer is one of the leading causes of morbidity and mortality worldwide. Colorectal cancer (CRC) is the third most frequently diagnosed cancer in men and the second in women. Standard patterns of antitumor therapy, including cisplatin, are ineffective due to their lack of specificity for tumor cells, development of drug resistance, and severe side effects. For this reason, new methods and strategies for CRC treatment are urgently needed. Current research includes novel platinum (Pt)- and other metal-based drugs such as gold (Au), silver (Ag), iridium (Ir), or ruthenium (Ru). Au(III) compounds are promising drug candidates for CRC treatment due to their structural similarity to Pt(II). Their advantage is their relatively good solubility in water, but their disadvantage is an unsatisfactory stability under physiological conditions. Due to these limitations, work is still underway to improve the formula of Au(III) complexes by combining with various types of ligands capable of stabilizing the Au(III) cation and preventing its reduction under physiological conditions. This review summarizes the achievements in the field of stable Au(III) complexes with potential cytotoxic activity restricted to cancer cells. Moreover, it has been shown that not nucleic acids but various protein structures such as thioredoxin reductase (TrxR) mediate the antitumor effects of Au derivatives. The state of the art of the in vivo studies so far conducted is also described.

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 141
Fabrice Lejeune

Nonsense-mediated mRNA decay (NMD) is both a mechanism for rapidly eliminating mRNAs carrying a premature termination codon and a pathway that regulates many genes. This implies that NMD must be subject to regulation in order to allow, under certain physiological conditions, the expression of genes that are normally repressed by NMD. Therapeutically, it might be interesting to express certain NMD-repressed genes or to allow the synthesis of functional truncated proteins. Developing such approaches will require a good understanding of NMD regulation. This review describes the different levels of this regulation in human cells.

2022 ◽  
Vol 9 ◽  
Tamara Matthyssen ◽  
Wenyi Li ◽  
James A. Holden ◽  
Jason C. Lenzo ◽  
Sara Hadjigol ◽  

Antimicrobial peptides (AMPs) are found in nearly all living organisms, show broad spectrum antibacterial activity, and can modulate the immune system. Furthermore, they have a very low level of resistance induction in bacteria, which makes them an ideal target for drug development and for targeting multi-drug resistant bacteria ‘Superbugs’. Despite this promise, AMP therapeutic use is hampered as typically they are toxic to mammalian cells, less active under physiological conditions and are susceptible to proteolytic degradation. Research has focused on addressing these limitations by modifying natural AMP sequences by including e.g., d-amino acids and N-terminal and amino acid side chain modifications to alter structure, hydrophobicity, amphipathicity, and charge of the AMP to improve antimicrobial activity and specificity and at the same time reduce mammalian cell toxicity. Recently, multimerisation (dimers, oligomer conjugates, dendrimers, polymers and self-assembly) of natural and modified AMPs has further been used to address these limitations and has created compounds that have improved activity and biocompatibility compared to their linear counterparts. This review investigates how modifying and multimerising AMPs impacts their activity against bacteria in planktonic and biofilm states of growth.

2022 ◽  
Vol 20 (1) ◽  
Peng Zhang ◽  
Daoyuan Chen ◽  
Lin Li ◽  
Kaoxiang Sun

AbstractSurface charge of biological and medical nanocarriers has been demonstrated to play an important role in cellular uptake. Owing to the unique physicochemical properties, charge-reversal delivery strategy has rapidly developed as a promising approach for drug delivery application, especially for cancer treatment. Charge-reversal nanocarriers are neutral/negatively charged at physiological conditions while could be triggered to positively charged by specific stimuli (i.e., pH, redox, ROS, enzyme, light or temperature) to achieve the prolonged blood circulation and enhanced tumor cellular uptake, thus to potentiate the antitumor effects of delivered therapeutic agents. In this review, we comprehensively summarized the recent advances of charge-reversal nanocarriers, including: (i) the effect of surface charge on cellular uptake; (ii) charge-conversion mechanisms responding to several specific stimuli; (iii) relation between the chemical structure and charge reversal activity; and (iv) polymeric materials that are commonly applied in the charge-reversal delivery systems. Graphical Abstract

2022 ◽  
Juan Lu ◽  
Wei Dong ◽  
Gerald R Hammond ◽  
Yang Hong

Phosphatidylinositol (PtdIns) 4-phosphate (PI4P) and phosphatidylinositol 4,5-biphosphate (PI(4,5)P2 or PIP2) are key phosphoinositides that determine the identity of the plasma membrane (PM) and regulate numerous key biological events there. To date, the complex mechanisms regulating the homeostasis and dynamic turnover of PM PI4P and PIP2 in response to various physiological conditions and stresses remain to be fully elucidated. Here we report that hypoxia in Drosophila induces acute and reversible depletion of PM PI4P and PIP2 that severely disrupts the electrostatic PM targeting of multiple polybasic polarity proteins. Genetically encoded ATP sensors confirmed that hypoxia induces acute and reversible reduction of cellular ATP levels which showed a strong real-time correlation with the levels of PM PI4P and PIP2 in cultured cells. By combining genetic manipulations with quantitative imaging assays we showed that PI4KIIIa, as well as Rbo/EFR3 and TTC7 that are essential for targeting PI4KIIIa to PM, are required for maintaining the homeostasis and dynamic turnover of PM PI4P and PIP2 under normoxia and hypoxia. Our results revealed that in cells challenged by energetic stresses triggered by hypoxia, ATP inhibition and possibly ischemia, dramatic turnover of PM PI4P and PIP2 could have profound impact on many cellular processes including electrostatic PM targeting of numerous polybasic proteins.

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 178
Kuang-Hao Lin ◽  
Bo-Xun Peng

This study developed a virtual reality interactive game with smart wireless wearable technology for healthcare of elderly users. The proposed wearable system uses its intelligent and wireless features to collect electromyography signals and upload them to a cloud database for further analysis. The electromyography signals are then analyzed for the users’ muscle fatigue, health, strength, and other physiological conditions. The average slope maximum So and Chan (ASM S & C) algorithm is integrated in the proposed system to effectively detect the quantity of electromyography peaks, and the accuracy is as high as 95%. The proposed system can promote the health conditions of elderly users, and motivate them to acquire new knowledge of science and technology.

2022 ◽  
Vol 12 (1) ◽  
Amanat Ali ◽  
Soja Saghar Soman ◽  
Ranjit Vijayan

AbstractHemoglobin is one of the most widely studied proteins genetically, biochemically, and structurally. It is an oxygen carrying tetrameric protein that imparts the characteristic red color to blood. Each chain of hemoglobin harbors a heme group embedded in a hydrophobic pocket. Several studies have investigated structural variations present in mammalian hemoglobin and their functional implications. However, camel hemoglobin has not been thoroughly explored, especially from a structural perspective. Importantly, very little is known about how the heme group interacts with hemoglobin under varying conditions of osmolarity and temperature. Several experimental studies have indicated that the tense (T) state is more stable than the relaxed (R) state of hemoglobin under normal physiological conditions. Despite the fact that R state is less stable than the T state, no extensive structural dynamics studies have been performed to investigate global quaternary transitions of R state hemoglobin under normal physiological conditions. To evaluate this, several 500 ns all-atom molecular dynamics simulations were performed to get a deeper understanding of how camel hemoglobin behaves under stress, which it is normally exposed to, when compared to human hemoglobin. Notably, camel hemoglobin was more stable under physiological stress when compared to human hemoglobin. Additionally, when compared to camel hemoglobin, cofactor-binding regions of hemoglobin also exhibited more fluctuations in human hemoglobin under the conditions studied. Several differences were observed between the residues of camel and human hemoglobin that interacted with heme. Importantly, distal residues His58 of α hemoglobin and His63 of β hemoglobin formed more sustained interactions, especially at higher temperatures, in camel hemoglobin. These residues are important for oxygen binding to hemoglobin. Thus, this work provides insights into how camel and human hemoglobin differ in their interactions under stress.

Sign in / Sign up

Export Citation Format

Share Document