water movement
Recently Published Documents


TOTAL DOCUMENTS

1972
(FIVE YEARS 308)

H-INDEX

73
(FIVE YEARS 6)

Mycorrhiza ◽  
2022 ◽  
Author(s):  
Carolyn J. Schultz ◽  
Yue Wu ◽  
Ute Baumann

AbstractDiversity in arbuscular mycorrhizal fungi (AMF) contributes to biodiversity and resilience in natural environments and healthy agricultural systems. Functional complementarity exists among species of AMF in symbiosis with their plant hosts, but the molecular basis of this is not known. We hypothesise this is in part due to the difficulties that current sequence assembly methodologies have assembling sequences for intrinsically disordered proteins (IDPs) due to their low sequence complexity. IDPs are potential candidates for functional complementarity because they often exist as extended (non-globular) proteins providing additional amino acids for molecular interactions. Rhizophagus irregularis arabinogalactan-protein-like proteins (AGLs) are small secreted IDPs with no known orthologues in AMF or other fungi. We developed a targeted bioinformatics approach to identify highly variable AGLs/IDPs in RNA-sequence datasets. The approach includes a modified multiple k-mer assembly approach (Oases) to identify candidate sequences, followed by targeted sequence capture and assembly (mirabait-mira). All AMF species analysed, including the ancestral family Paraglomeraceae, have small families of proteins rich in disorder promoting amino acids such as proline and glycine, or glycine and asparagine. Glycine- and asparagine-rich proteins also were found in Geosiphon pyriformis (an obligate symbiont of a cyanobacterium), from the same subphylum (Glomeromycotina) as AMF. The sequence diversity of AGLs likely translates to functional diversity, based on predicted physical properties of tandem repeats (elastic, amyloid, or interchangeable) and their broad pI ranges. We envisage that AGLs/IDPs could contribute to functional complementarity in AMF through processes such as self-recognition, retention of nutrients, soil stability, and water movement.


Geophysics ◽  
2022 ◽  
pp. 1-79
Author(s):  
Mutlaq Alarouj ◽  
Matthew David Jackson

Monitoring water movement toward production wells through downhole measurements of self-potential (SP) was a promising new technology. However, there were uncertainties about its applicability in heterogeneous, multilayered reservoirs. Using numerical modeling, we investigated the likely magnitude and behavior of SP during oil production supported by water injection in two different models of such reservoirs. We found that the magnitude of the SP signal that would be measured along a production well increased as water approached the well, exceeding an assumed noise level of 0.1 mV before water breakthrough. We also found that, in the reservoir models tested, the maximum value of SP at the well skewed toward the fastest waterfront before water breakthrough. The trend of SP increasing at the well with time, together with the shape of the SP profile, were the prime indicators used to investigate water movement. In the reservoir models tested, before water breakthrough the fastest approaching waterfront could be detected approximately 20 m away from the well. However, subsequent waterfronts approaching the well in other layers could not be detected before breakthrough. The effect of these later waterfronts on the SP profile at the well was only detectable at breakthrough. We attributed this to the fact that the SP generated in these layers is masked by the high SP created by the fastest waterfront. Our findings emphasized the importance of an enhanced understanding of reservoir geology and rock electrical properties for better prediction and interpretation of SP.


2022 ◽  
Vol 15 (1) ◽  
pp. 129-143
Author(s):  
Vladimir Mirlas ◽  
Yaakov Anker ◽  
Asher Aizenkod ◽  
Naftali Goldshleger

Abstract. Olive (Olea europaea L.) orchard brackish water irrigation with incorrect irrigation management reduces soil fertility and degrades soil health through soil salinization. This study was conducted in the Beit She'an Valley, one of the main agricultural regions in Israel, in an olive orchard in which a combination of soil salinization and poor drainage conditions impedes plant development and causes severe economic damage. By combining various research methods, including soil salinity monitoring, field experiments, remote sensing (frequency domain electromagnetic – FDEM), and unsaturated soil profile saline water movement modeling, the salinization processes were quantified. Irrigation water conductance of 3.13 dS m−1 points to salinization within the tree upper root zone, whereas the modeling results suggest that salinization danger is greater with brackish treated wastewater rather than with lower-salinity brackish irrigation groundwater and that irrigation with potable water can help reduce salt accumulation and recover damaged plots.


2022 ◽  
Author(s):  
Laura Piho ◽  
Andreas Alexander ◽  
Maarja Kruusmaa

Abstract. Glacier hydrology describes water movement over, through and under glaciers and ice sheets. Water reaching the ice bed influences ice motion and ice dynamical models, therefore requiring a good understanding of glacier hydrology, particularly water pressures and pathways. However, as in situ observations are sparse and methods for direct observations of water pathways and internal pressures are lacking, our understanding of the aforementioned pathways and pressure remains limited. Here, we present a method that allows the reconstruction of planar subsurface water flow paths and spatially reference water pressures. We showcase this method by reconstructing the 2D topology and the water pressure distribution of an englacial channel in Austre Brøggerbreen (Svalbard). The approach uses inertial measurements from submersible sensing drifters and reconstructs the flow path between given start and end coordinates. Validation on a supraglacial channel shows an average length error of 3.9 m (5.3 %). At the englacial channel, the average length error is 107 m (11.6 %) and the average pressure error 3.4 hPa (0.3 %). Our method allows mapping sub- and englacial flow paths and the pressure distribution within, thereby facilitating hydrological model validation. Further, our method also allows the reconstruction of other, previously unexplored, subsurface fluid flow paths.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Jessica K. Devitt ◽  
Albert Chung ◽  
John J. Schenk

Abstract Background How do xerophytic species thrive in environments that experience extreme annual drought? Although critical to the survival of many species, the genetic responses to drought stress in many non-model organisms has yet to be explored. We investigated this question in Mentzelia section Bartonia (Loasaceae), which occurs throughout western North America, including arid lands. To better understand the genetic responses to drought stress among species that occur in different habitats, the gene expression levels of three species from Mentzelia were compared across a precipitation gradient. Two de novo reference transcriptomes were generated and annotated. Leaf and root tissues were collected from control and drought shocked plants and compared to one another for differential expression. A target-gene approach was also implemented to better understand how drought-related genes from model and crop species function in non-model systems. Results When comparing the drought-shock treatment plants to their respective control plants, we identified 165 differentially expressed clusters across all three species. Differentially expressed genes including those associated with water movement, photosynthesis, and delayed senescence. The transcriptome profiling approach was coupled with a target genes approach that measured expression of 90 genes associated with drought tolerance in model organisms. Comparing differentially expressed genes with a ≥ 2 log-fold value between species and tissue types showed significant differences in drought response. In pairwise comparisons, species that occurred in drier environments differentially expressed greater genes in leaves when drought shocked than those from wetter environments, but expression in the roots mostly produced opposite results. Conclusions Arid-adapted species mount greater genetic responses compared to the mesophytic species, which has likely evolved in response to consistent annual drought exposure across generations. Drought responses also depended on organ type. Xerophytes, for example, mounted a larger response in leaves to downregulate photosynthesis and senescence, while mobilizing carbon and regulating water in the roots. The complexity of drought responses in Mentzelia suggest that whole organism responses need to be considered when studying drought and, in particular, the physiological mechanisms in which plants regulate water, carbon, cell death, metabolism, and secondary metabolites.


2021 ◽  
Vol 12 (1) ◽  
pp. 121
Author(s):  
Marcelo G. Simões ◽  
Felix A. Farret ◽  
Hosna Khajeh ◽  
Mahdi Shahparasti ◽  
Hannu Laaksonen

This paper presents a new holistic approach that combines solutions for the future power systems. It describes clearly how solar energy is definitely the best outlet for a clean and sustainable planet, either due to their use in both vertical (V) or horizontal (H) forms such as: hydroelectric V&H, wind V&H, thermo-oceanic V&H, water movement sea V&H (tides and waves), solar thermoelectric, PV, and surface geothermal energy. New points of view and simple formulas are suggested to calculate the best characteristic intensity, storage means and frequency for specific places and how to manage the most well-known renewable sources of energy. Future renewables-based power system requires a huge amount of flexibility from different type and size of controllable energy resources. These flexible energy resources can be used in an aggregated manner to provide different ancillary services for the distribution and transmission network. In addition, flexible energy resources and renewable generation can be utilized in different kinds of energy communities and smart cities to benefit all stakeholders and society at the same time with future-proof market structures, new business models and management schemes enabling increased utilization of flexible energy resources. Many of the flexible energy resources and renewable-based generation units are also inverter-interfaced and therefore the authors present future power converter systems for energy sources as well as the latest age of multilevel converters.


Author(s):  
V. Nakonechnyi

In the article considers the environmental problems that arise during the construction or operation of irrigation systems and analyzes the methods of monitoring the technical condition of their elements. The relevance of research on this topic is due to the progressive dynamics of pollution of surface, groundwater and soils around irrigation networks, which leads to the deterioration of their condition and the development of erosion. The purpose of the study is to identify ways of migration of filtration waters and the consequences of this, to provide an objective justification for the geophysical method of the natural pulsed electromagnetic field of the Earth that was used. To achieve this goal, a number of tasks were solved, such as: the choice of methods for detecting water filtration zones using remote methods; conducting field studies of the state of agricultural lands around the regulatory basins of Tsarychanska irrigation systems. Construction of maps, graphs, diagrams; comparison, analysis of surveys conducted around the basin of the Tsarychanska irrigation system; identification of water movement routes in the underground space depending on the geological structure of the region, forecasting the consequences of soil flooding around the basin. Previous studies are considered. The research of lands located around the regulatory basins was carried out by the method of PIEMPZ, the position of water filtration zones in the soils adjacent to the basin and the direction of water migration were established, the nature of their flow and possible consequences were analyzed. During the research, all the anomalies of the increased and decreased values ​​of the flux density of the magnetic component of PIEMPZ were identified and their characteristics were given. According to the data, the groundwater level rose to almost 3 m. In the eastern part of the RB there is an abnormal decrease in relief. All filtration and flood zones allocated in 2016 increased. According to the filming in 2018, both the northern and eastern sides, except for a small area in the north-western part, are flooded. This level of groundwater worsens the yield and environmental situation around RB. Recommendations provided.


2021 ◽  
Author(s):  
Genjiu Wang ◽  
Dandan Hu ◽  
Qianyao Li

Abstract It is generally believed that Cretaceous bioclastic limestone in Mesopotamia basin in central and southern Iraq is a typical porous reservoir with weak fracture development. Therefore, previous studies on the fracture of this kind of reservoir are rare. As a common seepage channel in carbonate rock, fracture has an important influence on single well productivity and waterflooding development of carbonate reservoir. Based on seismic, core and production data, this study analyzes the development characteristics of fractures from various aspects, and discusses the influence of fractures on water injection development of reservoirs. Through special processing of seismic data, it is found that there are a lot of micro fractures in Cretaceous bioclastic limestone reservoir. Most of these micro fractures are filled fractures without conductivity under the original reservoir conditions. However, with the further development of the reservoir, the reservoir pressure, oil-water movement, water injection and other conditions have changed, resulting in the original reservoir conditions of micro fractures with conductivity. The water cut of many production wells in the high part of reservoir rises sharply. In order to describe the three-dimensional spatial distribution of fractures, the core data is used to verify the seismic fracture distribution data volume. After the verification effect is satisfied, the three-dimensional fracture data volume is transformed into the geological model to establish the permeability field including fracture characteristics. The results of numerical simulation show that water mainly flows into the reservoir through high angle micro fractures. Fractures are identified by seismic and fracture model is established to effectively recognize the influence of micro fractures on water injection development in reservoir development process, which provides important guidance for oilfield development of Cretaceous bioclastic limestone reservoir in the central and southern Iraq fields.


Sign in / Sign up

Export Citation Format

Share Document