An anatomically constrained model of V1 simple cells predicts the coexistence of push-pull and broad inhibition

2021 ◽  
pp. JN-RM-0928-20
Author(s):  
M. Morgan Taylor ◽  
Diego Contreras ◽  
Alain Destexhe ◽  
Yves Frégnac ◽  
Jan Antolik
2013 ◽  
Vol 33 (28) ◽  
pp. 11372-11389 ◽  
Author(s):  
J. Zhuang ◽  
C. R. Stoelzel ◽  
Y. Bereshpolova ◽  
J. M. Huff ◽  
X. Hei ◽  
...  

Neuron ◽  
2001 ◽  
Vol 30 (1) ◽  
pp. 263-274 ◽  
Author(s):  
Ilan Lampl ◽  
Jeffrey S. Anderson ◽  
Deda C. Gillespie ◽  
David Ferster

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Lihui Cen ◽  
Ziqiang Wu ◽  
Xiaofang Chen ◽  
Yanggui Zou ◽  
Shaohui Zhang

This paper proposes a model predictive control of open irrigation canals with constraints. The Saint-Venant equations are widely used in hydraulics to model an open canal. As a set of hyperbolic partial differential equations, they are not solved explicitly and difficult to design optimal control algorithms. In this work, a prediction model of an open canal is developed by discretizing the Saint-Venant equations in both space and time. Based on the prediction model, a constrained model predictive control was firstly investigated for the case of one single-pool canal and then generalized to the case of a cascaded canal with multipools. The hydraulic software SICC was used to simulate the canal and test the algorithms with application to a real-world irrigation canal of Yehe irrigation area located in Hebei province.


Sign in / Sign up

Export Citation Format

Share Document