scholarly journals Erratum for Harris et al., Three-Dimensional Structure of Dendritic Spines and Synapses in Rat Hippocampus (CAl) at Postnatal Day 15 and Adult Ages: Implications for the Maturation of Synaptic Physiology and Long-term Potentiation

1992 ◽  
Vol 12 (8) ◽  
pp. np.2-np ◽  
PLoS ONE ◽  
2009 ◽  
Vol 4 (6) ◽  
pp. e6021 ◽  
Author(s):  
Amadou T. Corera ◽  
Guy Doucet ◽  
Edward A. Fon

Hippocampus ◽  
1997 ◽  
Vol 7 (1) ◽  
pp. 88-94 ◽  
Author(s):  
Tzu-Ping Yu ◽  
Jeffrey Fein ◽  
Tien Phan ◽  
Christopher J. Evans ◽  
Cui-Wei Xie

Author(s):  
F. H. Lopes da Silva ◽  
W. J. Wadman ◽  
W. Kamphuis ◽  
B. P. C. Melchers ◽  
J. P. M. Pijn

2019 ◽  
Vol 400 (9) ◽  
pp. 1129-1139 ◽  
Author(s):  
Iryna Hlushchenko ◽  
Pirta Hotulainen

Abstract Synaptic plasticity underlies central brain functions, such as learning. Ca2+ signaling is involved in both strengthening and weakening of synapses, but it is still unclear how one signal molecule can induce two opposite outcomes. By identifying molecules, which can distinguish between signaling leading to weakening or strengthening, we can improve our understanding of how synaptic plasticity is regulated. Here, we tested gelsolin’s response to the induction of chemical long-term potentiation (cLTP) or long-term depression (cLTD) in cultured rat hippocampal neurons. We show that gelsolin relocates from the dendritic shaft to dendritic spines upon cLTD induction while it did not show any relocalization upon cLTP induction. Dendritic spines are small actin-rich protrusions on dendrites, where LTD/LTP-responsive excitatory synapses are located. We propose that the LTD-induced modest – but relatively long-lasting – elevation of Ca2+ concentration increases the affinity of gelsolin to F-actin. As F-actin is enriched in dendritic spines, it is probable that increased affinity to F-actin induces the relocalization of gelsolin.


Sign in / Sign up

Export Citation Format

Share Document