scholarly journals Attention differentially affects acoustic and phonetic feature encoding in a multispeaker environment

2021 ◽  
pp. JN-RM-1455-20
Author(s):  
Emily S. Teoh ◽  
Farhin Ahmed ◽  
Edmund C. Lalor
Science ◽  
2014 ◽  
Vol 343 (6174) ◽  
pp. 1006-1010 ◽  
Author(s):  
N. Mesgarani ◽  
C. Cheung ◽  
K. Johnson ◽  
E. F. Chang

Author(s):  
Emily S. Teoh ◽  
Edmund C. Lalor

AbstractHumans have the remarkable ability to selectively focus on a single talker in the midst of other competing talkers. The neural mechanisms that underlie this phenomenon remain incompletely understood. In particular, there has been longstanding debate over whether attention operates at an early or late stage in the speech processing hierarchy. One way to better understand this is to examine how attention might differentially affect neurophysiological indices of hierarchical acoustic and linguistic speech representations. In this study, we do this by using encoding models to identify neural correlates of speech processing at various levels of representation. Specifically, using EEG recorded during a “cocktail party” attention experiment, we show that phonetic feature processing is evident for attended, but not unattended speech. Furthermore, we show that attention specifically enhances isolated indices of phonetic feature processing, but that such attention effects are not apparent for isolated measures of acoustic processing. These results provide new insights into the effects of attention on different pre-lexical representations of speech, insights that complement recent anatomical accounts of the hierarchical encoding of attended speech. Furthermore, our findings support the notion that – for attended speech – phonetic features are processed as a distinct stage, separate from the processing of the speech acoustics.


2020 ◽  
Vol 27 ◽  
Author(s):  
Zaheer Ullah Khan ◽  
Dechang Pi

Background: S-sulfenylation (S-sulphenylation, or sulfenic acid) proteins, are special kinds of post-translation modification, which plays an important role in various physiological and pathological processes such as cytokine signaling, transcriptional regulation, and apoptosis. Despite these aforementioned significances, and by complementing existing wet methods, several computational models have been developed for sulfenylation cysteine sites prediction. However, the performance of these models was not satisfactory due to inefficient feature schemes, severe imbalance issues, and lack of an intelligent learning engine. Objective: In this study, our motivation is to establish a strong and novel computational predictor for discrimination of sulfenylation and non-sulfenylation sites. Methods: In this study, we report an innovative bioinformatics feature encoding tool, named DeepSSPred, in which, resulting encoded features is obtained via n-segmented hybrid feature, and then the resampling technique called synthetic minority oversampling was employed to cope with the severe imbalance issue between SC-sites (minority class) and non-SC sites (majority class). State of the art 2DConvolutional Neural Network was employed over rigorous 10-fold jackknife cross-validation technique for model validation and authentication. Results: Following the proposed framework, with a strong discrete presentation of feature space, machine learning engine, and unbiased presentation of the underline training data yielded into an excellent model that outperforms with all existing established studies. The proposed approach is 6% higher in terms of MCC from the first best. On an independent dataset, the existing first best study failed to provide sufficient details. The model obtained an increase of 7.5% in accuracy, 1.22% in Sn, 12.91% in Sp and 13.12% in MCC on the training data and12.13% of ACC, 27.25% in Sn, 2.25% in Sp, and 30.37% in MCC on an independent dataset in comparison with 2nd best method. These empirical analyses show the superlative performance of the proposed model over both training and Independent dataset in comparison with existing literature studies. Conclusion : In this research, we have developed a novel sequence-based automated predictor for SC-sites, called DeepSSPred. The empirical simulations outcomes with a training dataset and independent validation dataset have revealed the efficacy of the proposed theoretical model. The good performance of DeepSSPred is due to several reasons, such as novel discriminative feature encoding schemes, SMOTE technique, and careful construction of the prediction model through the tuned 2D-CNN classifier. We believe that our research work will provide a potential insight into a further prediction of S-sulfenylation characteristics and functionalities. Thus, we hope that our developed predictor will significantly helpful for large scale discrimination of unknown SC-sites in particular and designing new pharmaceutical drugs in general.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 296
Author(s):  
Zeeshan Abbas ◽  
Hilal Tayara ◽  
Kil To Chong

Among DNA modifications, N4-methylcytosine (4mC) is one of the most significant ones, and it is linked to the development of cell proliferation and gene expression. To know different its biological functions, the accurate detection of 4mC sites is required. Although we have several techniques for the prediction of 4mC sites in different genomes based on both machine learning (ML) and convolutional neural networks (CNNs), there is no CNN-based tool for the identification of 4mC sites in the mouse genome. In this article, a CNN-based model named 4mCPred-CNN was developed to classify 4mC locations in the mouse genome. Until now, we had only two ML-based models for this purpose; they utilized several feature encoding schemes, and thus still had a lot of space available to improve the prediction accuracy. Utilizing only a single feature encoding scheme—one-hot encoding—we outperformed both of the previous ML-based techniques. In a ten-fold validation test, the proposed model, 4mCPred-CNN, achieved an accuracy of 85.71% and Matthews correlation coefficient (MCC) of 0.717. On an independent dataset, the achieved accuracy was 87.50% with an MCC value of 0.750. The attained results exhibit that the proposed model can be of great use for researchers in the fields of biology and bioinformatics.


2013 ◽  
Author(s):  
John Kane ◽  
Irena Yanushevskaya ◽  
John Dalton ◽  
Christer Gobl ◽  
Ailbhe Ní Chasaide

Sign in / Sign up

Export Citation Format

Share Document