scholarly journals L-glutamate-induced responses and cGMP-activated channels in three subtypes of retinal bipolar cells dissociated from the cat

1995 ◽  
Vol 15 (5) ◽  
pp. 3571-3582 ◽  
Author(s):  
P de la Villa ◽  
T Kurahashi ◽  
A Kaneko
2000 ◽  
Vol 84 (2) ◽  
pp. 666-676 ◽  
Author(s):  
Jiu-Lin Du ◽  
Xiong-Li Yang

γ-Aminobutyric acid (GABA) receptors on retinal bipolar cells (BCs) are highly relevant to spatial and temporal integration of visual signals in the outer and inner retina. In the present work, subcellular localization and complements of GABAA and GABACreceptors on BCs were investigated by whole cell recordings and local drug application via multi-barreled puff pipettes in the bullfrog retinal slice preparation. Four types of the BCs (types 1–4) were identified morphologically by injection of Lucifer yellow. According to the ramification levels of the axon terminals and the responses of these cells to glutamate (or kainate) applied at their dendrites, types 1 and 2 of BCs were supposed to be off type, whereas types 3 and 4 of BCs might be on type. Bicuculline (BIC), a GABAA receptor antagonist, and imidazole-4-acetic acid (I4AA), a GABAC receptor antagonist, were used to distinguish GABA receptor-mediated responses. In all BCs tested, not only the axon terminals but also the dendrites showed high GABA sensitivity mediated by both GABAA and GABACreceptors. Subcellular localization and complements of GABAA and GABAC receptors at the dendrites and axon terminals were highly related to the dichotomy of offand on BCs. In the case of off BCs, GABAA receptors were rather evenly distributed at the dendrites and axon terminals, but GABAC receptors were predominantly expressed at the axon terminals. Moreover, the relative contribution of GABAC receptors to the axon terminals was prevalent over that of GABAA receptors, while the situation was reversed at the dendrites. In the case of on BCs, GABAA and GABAC receptors both preferred to be expressed at the axon terminals; relative contributions of these two GABA receptor subtypes to both the sites were comparable, while GABAC receptors were much less expressed than GABAA receptors. GABAA, but not GABAC receptors, were expressed clusteringly at axons of a population of BCs. In a minority of BCs, I4AA suppressed the GABAC responses at the dendrites, but not at the axon terminal, implying that the GABAC receptors at these two sites may be heterogeneous. Taken together, these results suggest that GABAA and GABAC receptors may play different roles in the outer and inner retina and the differential complements of the two receptors on off and on BCs may be closely related to physiological functions of these cells.


1993 ◽  
Vol 18 ◽  
pp. S28
Author(s):  
Katsunori Kobayashi ◽  
Masao Tachibana ◽  
Takashi Okada

2000 ◽  
Vol 17 (2) ◽  
pp. 273-281 ◽  
Author(s):  
M. KANEDA ◽  
B. ANDRÁSFALVY ◽  
A. KANEKO

The localization of endogenous Zn2+ in the mouse retina was examined histochemically and the inhibitory action of Zn2+ on GABA-induced responses was studied in bipolar cells isolated from the mouse retina. Accumulation of endogenous Zn2+ was detected in photoreceptors, bipolar, and/or amacrine cells by either the bromopyridylazo-diethylaminophenol method or the dithizone method. Under whole-cell recording conditions, GABA induced a Cl− current in isolated bipolar cells. The current consisted of two components. The first component was inhibited completely by application of 100 μM bicuculline, suggesting that this is a GABAA-receptor mediated current. The second component was inhibited completely by 100 μM 3-aminopropyl-(methyl)-phosphinic acid, suggesting that this is a GABAC-receptor mediated current. GABAC receptors were present at a higher density on the axon terminal than on dendrites. Zn2+ inhibited both GABAA and GABAC receptors. GABAC receptors were more susceptible to Zn2+; the IC50 for the GABAA receptor was 67.4 μM and that for the GABAC receptor was 1.9 μM. These results suggest that Zn2+ modulates the inhibitory interaction between amacrine and bipolar cells, particularly that mediated by the GABAC receptor.


2011 ◽  
Vol 52 (5) ◽  
pp. 2497 ◽  
Author(s):  
Lan Yue ◽  
An Xie ◽  
Karol S. Bruzik ◽  
Bente Frølund ◽  
Haohua Qian ◽  
...  

2003 ◽  
Vol 20 (1) ◽  
pp. 19-28 ◽  
Author(s):  
WALLACE B. THORESON ◽  
DWIGHT A. BURKHARDT

To investigate the influence of voltage-sensitive conductances in shaping light-evoked responses of retinal bipolar cells, whole-cell recordings were made in the slice preparation of the tiger salamander, Ambystoma tigrinum. To study contrast encoding, the retina was stimulated with 0.5-s steps of negative and positive contrasts of variable magnitude. In the main, responses recorded under voltage- and current-clamp modes were remarkably similar. In general agreement with past results in the intact retina, the contrast/response curves were relatively steep for small contrasts, thus showing high contrast gain; the dynamic range was narrow, and responses tended to saturate at relatively small contrasts. For ON and OFF cells, linear regression analysis showed that the current response accounted for 83–93% of the variance of the voltage response. Analysis of specific parameters of the contrast/response curve showed that contrast gain was marginally higher for voltage than current in three of four cases, while no significant differences were found for half-maximal contrast (C50), dynamic range, or contrast dominance. In sum, the overall similarity between current and voltage responses indicates that voltage-sensitive conductances do not play a major role in determining the shape of the bipolar cell's contrast response in the light-adapted retina. The salient characteristics of the contrast response of bipolars apparently arise between the level of the cone voltage response and the postsynaptic current of bipolar cells, via the transformation between cone voltage and transmitter release and/or via the interaction between the neurotransmitter glutamate and its postsynaptic receptors on bipolar cells.


Sign in / Sign up

Export Citation Format

Share Document