scholarly journals Speech Categorization Reveals the Role of Early-Stage Temporal-Coherence Processing in Auditory Scene Analysis

2021 ◽  
pp. JN-RM-1610-21
Author(s):  
Vibha Viswanathan ◽  
Barbara Shinn-Cunningham ◽  
Michael G. Heinz
2021 ◽  
Author(s):  
Vibha Viswanathan ◽  
Barbara G. Shinn-Cunningham ◽  
Michael G. Heinz

AbstractTemporal coherence of sound fluctuations across spectral channels is thought to aid auditory grouping and scene segregation. Although prior studies on the neural bases of temporal-coherence processing focused mostly on cortical contributions, neurophysiological evidence suggests that temporal-coherence-based scene analysis may start as early as the cochlear nucleus (i.e., the first auditory region supporting cross-channel processing over a wide frequency range). Accordingly, we hypothesized that aspects of temporal-coherence processing that could be realized in early auditory areas may shape speech understanding in noise. We then explored whether physiologically plausible computational models could account for results from a behavioral experiment that measured consonant categorization in different masking conditions. We tested whether within-channel masking of target-speech modulations predicted consonant confusions across the different conditions, and whether predicted performance was improved by adding across-channel temporal-coherence processing mirroring the computations known to exist in the cochlear nucleus. Consonant confusions provide a rich characterization of error patterns in speech categorization, and are thus crucial for rigorously testing models of speech perception; however, to the best of our knowledge, they have not been utilized in prior studies of scene analysis. We find that within-channel modulation masking can reasonably account for category confusions, but that it fails when temporal fine structure (TFS) cues are unavailable. However, the addition of across-channel temporal-coherence processing significantly improves confusion predictions across all tested conditions. Our results suggest that temporal-coherence processing strongly shapes speech understanding in noise, and that physiological computations that exist early along the auditory pathway may contribute to this process.


2021 ◽  
Vol 44 ◽  
Author(s):  
Laurel J. Trainor

Abstract The evolutionary origins of complex capacities such as musicality are not simple, and likely involved many interacting steps of musicality-specific adaptations, exaptations, and cultural creation. A full account of the origins of musicality needs to consider the role of ancient adaptations such as credible singing, auditory scene analysis, and prediction-reward circuits in constraining the emergence of musicality.


2011 ◽  
Vol 34 (3) ◽  
pp. 114-123 ◽  
Author(s):  
Shihab A. Shamma ◽  
Mounya Elhilali ◽  
Christophe Micheyl

2021 ◽  
Vol 12 ◽  
Author(s):  
Kai Siedenburg ◽  
Kirsten Goldmann ◽  
Steven van de Par

Auditory scene analysis is an elementary aspect of music perception, yet only little research has scrutinized auditory scene analysis under realistic musical conditions with diverse samples of listeners. This study probed the ability of younger normal-hearing listeners and older hearing-aid users in tracking individual musical voices or lines in JS Bach's The Art of the Fugue. Five-second excerpts with homogeneous or heterogenous instrumentation of 2–4 musical voices were presented from spatially separated loudspeakers and preceded by a short cue for signaling the target voice. Listeners tracked the cued voice and detected whether an amplitude modulation was imposed on the cued voice or a distractor voice. Results indicated superior performance of young normal-hearing listeners compared to older hearing-aid users. Performance was generally better in conditions with fewer voices. For young normal-hearing listeners, there was interaction between the number of voices and the instrumentation: performance degraded less drastically with an increase in the number of voices for timbrally heterogeneous mixtures compared to homogeneous mixtures. Older hearing-aid users generally showed smaller effects of the number of voices and instrumentation, but no interaction between the two factors. Moreover, tracking performance of older hearing aid users did not differ when these participants did or did not wear hearing aids. These results shed light on the role of timbral differentiation in musical scene analysis and suggest reduced musical scene analysis abilities of older hearing-impaired listeners in a realistic musical scenario.


Sign in / Sign up

Export Citation Format

Share Document