Theta-burst stimulation of primary afferents drives long-term potentiation in the spinal cord and persistent pain via α2δ-1–bound NMDA receptors

2021 ◽  
pp. JN-RM-1968-21
Author(s):  
Yuying Huang (黄玉莹) ◽  
Shao-Rui Chen (陈少瑞) ◽  
Hong Chen (陈红) ◽  
Jing-Jing Zhou (周京京) ◽  
Daozhong Jin (金道忠) ◽  
...  
2019 ◽  
Vol 20 (12) ◽  
pp. 3048 ◽  
Author(s):  
Feldmann ◽  
Le Prieult ◽  
Felzen ◽  
Thal ◽  
Engelhard ◽  
...  

Traumatic brain injury (TBI) can lead to impaired cognition and memory consolidation.The acute phase (24–48 h) after TBI is often characterized by neural dysfunction in the vicinity ofthe lesion, but also in remote areas like the contralateral hemisphere. Protein homeostasis is crucialfor synaptic long-term plasticity including the protein degradation systems, proteasome andautophagy. Still, little is known about the acute effects of TBI on synaptic long-term plasticity andprotein degradation. Thus, we investigated TBI in a controlled cortical impact (CCI) model in themotor and somatosensory cortex of mice ex vivo-in vitro. Late long-term potentiation (l-LTP) wasinduced by theta-burst stimulation in acute brain slices after survival times of 1–2 days. Proteinlevels for the plasticity related protein calcium/calmodulin-dependent protein kinase II (CaMKII)was quantified by Western blots, and the protein degradation activity by enzymatical assays. Weobserved missing maintenance of l-LTP in the ipsilateral hemisphere, however not in thecontralateral hemisphere after TBI. Protein levels of CaMKII were not changed but, interestingly,the protein degradation revealed bidirectional changes with a reduced proteasome activity and anincreased autophagic flux in the ipsilateral hemisphere. Finally, LTP recordings in the presence ofpharmacologically modified protein degradation systems also led to an impaired synaptic plasticity:bath-applied MG132, a proteasome inhibitor, or rapamycin, an activator of autophagy, bothadministered during theta burst stimulation, blocked the induction of LTP. These data indicate thatalterations in protein degradation pathways likely contribute to cognitive deficits in the acute phaseafter TBI, which could be interesting for future approaches towards neuroprotective treatmentsearly after traumatic brain injury.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xiao-Kuo He ◽  
Hui-Hua Liu ◽  
Shan-Jia Chen ◽  
Qian-Qian Sun ◽  
Guo Yu ◽  
...  

ObjectiveThis study explored whether acupuncture affects the maintenance of long-term potentiation (LTP)-like plasticity induced by transcranial magnetic stimulation (TMS) and the acquisition of motor skills following repetitive sequential visual isometric pinch task (SVIPT) training.MethodsThirty-six participants were recruited. The changes in the aftereffects induced by intermittent theta-burst stimulation (iTBS) and followed acupuncture were tested by the amplitude motor evoked potential (MEP) at pre-and-post-iTBS for 30 min and at acupuncture-in and -off for 30 min. Secondly, the effects of acupuncture on SVIPT movement in inducing error rate and learning skill index were tested.ResultsFollowing one session of iTBS, the MEP amplitude was increased and maintained at a high level for 30 min. The facilitation of MEP was gradually decreased to the baseline level during acupuncture-in and did not return to a high level after needle extraction. The SVIPT-acupuncture group had a lower learning skill index than those in the SVIPT group, indicating that acupuncture intervention after SVIPT training may restrain the acquisition ability of one’s learning skills.ConclusionAcupuncture could reverse the LTP-like plasticity of the contralateral motor cortex induced by iTBS. Subsequent acupuncture may negatively affect the efficacy of the acquisition of learned skills in repetitive exercise training.


2015 ◽  
Author(s):  
Michael Chirillo ◽  
Jennifer Bourne ◽  
Laurence Lindsey ◽  
Kristen Harris

Smooth endoplasmic reticulum (SER) forms a membranous network that extends throughout neurons. SER regulates intracellular calcium and the posttranslational modification and trafficking of membrane and proteins. As the structure of dendritic SER shifts from a tubular to a more complex, branched form, the movement of membrane cargo slows and delivery to nearby spines increases. Here we discovered changes in the structural complexity of SER that have important functional implications during long-term potentiation (LTP) in adult rat hippocampus. By 2 hours after the induction of LTP with theta-burst stimulation, synapse enlargement was greatest on spines that contained SER. More spines had an elaborate spine apparatus than a simple tubule of SER. The SER in dendritic shafts became more complex beneath spines with both polyribosomes and SER, and less complex along aspiny dendritic regions. The findings suggest that local changes in dendritic SER support enhanced growth of specific synapses during LTP.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Wenjun Dai ◽  
Yao Geng ◽  
Hao Liu ◽  
Chuan Guo ◽  
Wenxiang Chen ◽  
...  

Noninvasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) can induce long-term potentiation-like facilitation, but whether the combination of TMS and tDCS has additive effects is unclear. To address this issue, in this randomized crossover study, we investigated the effect of preconditioning with cathodal high-definition (HD) tDCS on intermittent theta burst stimulation- (iTBS-) induced plasticity in the left motor cortex. A total of 24 healthy volunteers received preconditioning with cathodal HD-tDCS or sham intervention prior to iTBS in a random order with a washout period of 1 week. The amplitude of motor evoked potentials (MEPs) was measured at baseline and at several time points (5, 10, 15, and 30 min) after iTBS to determine the effects of the intervention on cortical plasticity. Preconditioning with cathodal HD-tDCS followed by iTBS showed a greater increase in MEP amplitude than sham cathodal HD-tDCS preconditioning and iTBS at each time postintervention point, with longer-lasting after-effects on cortical excitability. These results demonstrate that preintervention with cathodal HD-tDCS primes the motor cortex for long-term potentiation induced by iTBS and is a potential strategy for improving the clinical outcome to guide therapeutic decisions.


Channels ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 287-293
Author(s):  
Preethy S. Sridharan ◽  
Yuan Lu ◽  
Richard C Rice ◽  
Andrew A. Pieper ◽  
Anjali M. Rajadhyaksha

Sign in / Sign up

Export Citation Format

Share Document