primary afferents
Recently Published Documents


TOTAL DOCUMENTS

510
(FIVE YEARS 32)

H-INDEX

64
(FIVE YEARS 2)

Neuron ◽  
2022 ◽  
Author(s):  
Lian Cui ◽  
Jeff Guo ◽  
Suna L. Cranfill ◽  
Mayank Gautam ◽  
Janardhan Bhattarai ◽  
...  
Keyword(s):  

2021 ◽  
pp. JN-RM-1968-21
Author(s):  
Yuying Huang (黄玉莹) ◽  
Shao-Rui Chen (陈少瑞) ◽  
Hong Chen (陈红) ◽  
Jing-Jing Zhou (周京京) ◽  
Daozhong Jin (金道忠) ◽  
...  

2021 ◽  
Vol 30 (5) ◽  
pp. 329-340
Author(s):  
Pa Reum Lee ◽  
Jin-Hee Lee ◽  
Ji Min Park ◽  
Seog Bae Oh

2021 ◽  
Author(s):  
Ashley N Dalrymple ◽  
Jordyn E Ting ◽  
Rohit Bose ◽  
James K Trevathan ◽  
Stephan Nieuwoudt ◽  
...  

Objective: The goal of this work was to compare afferent fiber recruitment by dorsal root ganglion (DRG) stimulation using an injectable polymer electrode (Injectrode®) and a more traditional cylindrical metal electrode. Approach: We exposed the L6 and L7 DRG in four cats via a partial laminectomy or burr hole. We stimulated the DRG using an Injectrode or a stainless steel electrode using biphasic pulses at three different pulse widths (80, 150, 300 μs) and pulse amplitudes spanning the range used for clinical DRG stimulation. We recorded antidromic evoked compound action potentials (ECAPs) in the sciatic, tibial, and common peroneal nerves using nerve cuffs. We calculated the conduction velocity of the ECAPs and determined the charge-thresholds and recruitment rates for ECAPs from Aɑ, Aβ, and Aδ fibers. We also performed electrochemical impedance spectroscopy measurements for both electrode types. Main Results: The Injectrode had similar or lower ECAP thresholds relative to the stainless steel electrode across all primary afferents (Aɑ, Aβ, Aδ) and pulse widths; charge-thresholds increased with wider pulse widths. Thresholds for generating ECAPs from Aβ fibers were 100.0 ± 32.3 nC using the stainless steel electrode, and 90.9 ± 42.9 nC using the Injectrode. The ECAP thresholds from the Injectrode were consistent over several hours of stimulation. The rate of recruitment was similar between the Injectrodes and stainless steel electrode and decreased with wider pulse widths. Significance: The Injectrode can effectively excite primary afferents when used for DRG stimulation within the range of parameters used for clinical DRG stimulation. The Injectrode can be implanted through minimally invasive techniques while achieving similar neural activation to conventional electrodes, making it an excellent candidate for future DRG stimulation and neuroprosthetic applications.


2021 ◽  
Vol 15 ◽  
Author(s):  
Lizhen Chen ◽  
Xiaoyu Wang ◽  
Xiaoning Zhang ◽  
Hongye Wan ◽  
Yangshuai Su ◽  
...  

Recent studies have shown that both superficial and deep acupuncture produced clinically relevant and persistent effect on chronic pain, and several subtypes of somatic primary afferents played critical roles in acupuncture and moxibustion analgesia. However, which kind of primary afferents in the superficial and deep tissue of the acupoint is activated by acupuncture or moxibustion to relieve pain persistently remains unclear. The aim of this study is to investigate the roles of distinct peripheral afferents in different layers of the tissue (muscle or skin) in the acupoint for pain relief. Muscular A-fibers activated by deep electroacupuncture (dEA) with lower intensity (approximately 1 mA) persistently alleviated inflammatory muscle pain. Meanwhile, cutaneous C-nociceptors excited by noxious moxibustion-like stimulation (MS) and topical application of capsaicin (CAP) on local acupoint area produced durable analgesic effect. Additionally, spontaneous activity of C-fibers caused by muscular inflammation was also inhibited by dEA and CAP. Furthermore, decreases in pain behavior induced by dEA disappeared after deep A-fibers were demyelinated by cobra venom, whereas CAP failed to relieve pain following cutaneous denervation. Collectively, these results indicate that dEA and MS ameliorate inflammatory muscle pain through distinct primary afferents in different layers of somatic tissue; the former is achieved by activating muscular A-fibers, while the latter is mediated by activating cutaneous C-fibers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maysam Oladazimi ◽  
Thibaut Putelat ◽  
Robert Szalai ◽  
Kentaro Noda ◽  
Isao Shimoyama ◽  
...  

AbstractNeuronal activities underlying a percept are constrained by the physics of sensory signals. In the tactile sense such constraints are frictional stick–slip events, occurring, amongst other vibrotactile features, when tactile sensors are in contact with objects. We reveal new biomechanical phenomena about the transmission of these microNewton forces at the tip of a rat’s whisker, where they occur, to the base where they engage primary afferents. Using high resolution videography and accurate measurement of axial and normal forces at the follicle, we show that the conical and curved rat whisker acts as a sign-converting amplification filter for moment to robustly engage primary afferents. Furthermore, we present a model based on geometrically nonlinear Cosserat rod theory and a friction model that recreates the observed whole-beam whisker dynamics. The model quantifies the relation between kinematics (positions and velocities) and dynamic variables (forces and moments). Thus, only videographic assessment of acceleration is required to estimate forces and moments measured by the primary afferents. Our study highlights how sensory systems deal with complex physical constraints of perceptual targets and sensors.


Author(s):  
Ashley N Dalrymple ◽  
Jordyn E Ting ◽  
Rohit Bose ◽  
Stephan Nieuwoudt ◽  
Manfred Franke ◽  
...  

2021 ◽  
Vol 17 (4) ◽  
pp. e1007887
Author(s):  
Yifu Luo ◽  
Chris S. Bresee ◽  
John W. Rudnicki ◽  
Mitra J. Z. Hartmann

Nearly all mammals have a vibrissal system specialized for tactile sensation, composed of whiskers growing from sensor-rich follicles in the skin. When a whisker deflects against an object, it deforms within the follicle and exerts forces on the mechanoreceptors inside. In addition, during active whisking behavior, muscle contractions around the follicle and increases in blood pressure in the ring sinus will affect the whisker deformation profile. To date, however, it is not yet possible to experimentally measure how the whisker deforms in an intact follicle or its effects on different groups of mechanoreceptors. The present study develops a novel model to predict vibrissal deformation within the follicle sinus complex. The model is based on experimental results from a previous ex vivo study on whisker deformation within the follicle, and on a new histological analysis of follicle tissue. It is then used to simulate whisker deformation within the follicle during passive touch and active whisking. Results suggest that the most likely whisker deformation profile is “S-shaped,” crossing the midline of the follicle right below the ring sinus. Simulations of active whisking indicate that an increase in overall muscle stiffness, an increase in the ratio between deep and superficial intrinsic muscle stiffness, and an increase in sinus blood pressure will all enhance tactile sensitivity. Finally, we discuss how the deformation profiles might map to the responses of primary afferents of each mechanoreceptor type. The mechanical model presented in this study is an important first step in simulating mechanical interactions within whisker follicles.


2021 ◽  
Vol 15 ◽  
Author(s):  
Lilach Gorodetski ◽  
Yocheved Loewenstern ◽  
Anna Faynveitz ◽  
Izhar Bar-Gad ◽  
Kim T. Blackwell ◽  
...  

The entopeduncular nucleus is one of the basal ganglia's output nuclei, thereby controlling basal ganglia information processing. Entopeduncular nucleus neurons integrate GABAergic inputs from the Striatum and the globus pallidus, together with glutamatergic inputs from the subthalamic nucleus. We show that endocannabinoids and dopamine interact to modulate the long-term plasticity of all these primary afferents to the entopeduncular nucleus. Our results suggest that the interplay between dopamine and endocannabinoids determines the balance between direct pathway (striatum) and indirect pathway (globus pallidus) in entopeduncular nucleus output. Furthermore, we demonstrate that, despite the lack of axon collaterals, information is transferred between neighboring neurons in the entopeduncular nucleus via endocannabinoid diffusion. These results transform the prevailing view of the entopeduncular nucleus as a feedforward “relay” nucleus to an intricate control unit, which may play a vital role in the process of action selection.


Sign in / Sign up

Export Citation Format

Share Document