scholarly journals Relief of G-Protein Inhibition of Calcium Channels and Short-Term Synaptic Facilitation in Cultured Hippocampal Neurons

2000 ◽  
Vol 20 (3) ◽  
pp. 889-898 ◽  
Author(s):  
David L. Brody ◽  
David T. Yue
2003 ◽  
Vol 90 (3) ◽  
pp. 1643-1653 ◽  
Author(s):  
Richard Bertram ◽  
Jessica Swanson ◽  
Mohammad Yousef ◽  
Zhong-Ping Feng ◽  
Gerald W. Zamponi

G protein–coupled receptors are ubiquitous in neurons, as well as other cell types. Activation of receptors by hormones or neurotransmitters splits the G protein heterotrimer into Gα and Gβγ subunits. It is now clear that Gβγ directly inhibits Ca2+ channels, putting them into a reluctant state. The effects of Gβγ depend on the specific β and γ subunits present, as well as the β subunit isoform of the N-type Ca2+ channel. We describe a minimal mathematical model for the effects of G protein action on the dynamics of synaptic transmission. The model is calibrated by data obtained by transfecting G protein and Ca2+ channel subunits into tsA-201 cells. We demonstrate with numerical simulations that G protein action can provide a mechanism for either short-term synaptic facilitation or depression, depending on the manner in which G protein–coupled receptors are activated. The G protein action performs high-pass filtering of the presynaptic signal, with a filter cutoff that depends on the combination of G protein and Ca2+ channel subunits present. At stimulus frequencies above the cutoff, trains of single spikes are transmitted, while only doublets are transmitted at frequencies below the cutoff. Finally, we demonstrate that relief of G protein inhibition can contribute to paired-pulse facilitation.


Sign in / Sign up

Export Citation Format

Share Document