scholarly journals A Minimal Model for G Protein–Mediated Synaptic Facilitation and Depression

2003 ◽  
Vol 90 (3) ◽  
pp. 1643-1653 ◽  
Author(s):  
Richard Bertram ◽  
Jessica Swanson ◽  
Mohammad Yousef ◽  
Zhong-Ping Feng ◽  
Gerald W. Zamponi

G protein–coupled receptors are ubiquitous in neurons, as well as other cell types. Activation of receptors by hormones or neurotransmitters splits the G protein heterotrimer into Gα and Gβγ subunits. It is now clear that Gβγ directly inhibits Ca2+ channels, putting them into a reluctant state. The effects of Gβγ depend on the specific β and γ subunits present, as well as the β subunit isoform of the N-type Ca2+ channel. We describe a minimal mathematical model for the effects of G protein action on the dynamics of synaptic transmission. The model is calibrated by data obtained by transfecting G protein and Ca2+ channel subunits into tsA-201 cells. We demonstrate with numerical simulations that G protein action can provide a mechanism for either short-term synaptic facilitation or depression, depending on the manner in which G protein–coupled receptors are activated. The G protein action performs high-pass filtering of the presynaptic signal, with a filter cutoff that depends on the combination of G protein and Ca2+ channel subunits present. At stimulus frequencies above the cutoff, trains of single spikes are transmitted, while only doublets are transmitted at frequencies below the cutoff. Finally, we demonstrate that relief of G protein inhibition can contribute to paired-pulse facilitation.

2002 ◽  
Vol 158 (2) ◽  
pp. 197-199 ◽  
Author(s):  
Wouter H. Moolenaar

Lysophosphatidic acid (LPA) is a serum phospholipid that evokes growth factor–like responses in many cell types through the activation of its G protein–coupled receptors. Although much is known about LPA signaling, it has remained unclear where and how bioactive LPA is produced. Umezu-Goto et al. (2002)(this issue, page 227) have purified a serum lysophospholipase D that generates LPA from lysophosphatidylcholine and found it to be identical to autotaxin, a cell motility–stimulating ectophosphodiesterase implicated in tumor progression. This result is surprising, as there was previously no indication that autotaxin could act as a phospholipase.


2006 ◽  
Vol 6 ◽  
pp. 946-966 ◽  
Author(s):  
Nicholas Young ◽  
James R. Van Brocklyn

Sphingosine-1-phosphate (S1P) is a bioactive lipid capable of eliciting dramatic effects in a variety of cell types. Signaling by this molecule is by a family of five G protein—coupled receptors named S1P1–5that signal through a variety of pathways to regulate cell proliferation, migration, cytoskeletal organization, and differentiation. These receptors are expressed in a wide variety of tissues and cell types, and their cellular effects contribute to important biological and pathological functions of S1P in many processes, including angiogenesis, vascular development, lymphocyte trafficking, and cancer. This review will focus on the current progress in the field of S1P receptor signaling and biology.


2017 ◽  
Vol 313 (5) ◽  
pp. G361-G372 ◽  
Author(s):  
Ivy Ka Man Law ◽  
David Miguel Padua ◽  
Dimitrios Iliopoulos ◽  
Charalabos Pothoulakis

G protein-coupled receptors (GPCRs) make up the largest transmembrane receptor superfamily in the human genome and are expressed in nearly all gastrointestinal cell types. Coupling of GPCRs and their respective ligands activates various phosphotransferases in the cytoplasm, and, thus, activation of GPCR signaling in intestine regulates many cellular and physiological processes. Studies in microRNAs (miRNAs) demonstrate that they represent critical epigenetic regulators of different pathophysiological responses in different organs and cell types in humans and animals. Here, we reviewed recent research on GPCR-miRNA interactions related to gastrointestinal pathophysiology, such as inflammatory bowel diseases, irritable bowel syndrome, and gastrointestinal cancers. Given that the presence of different types of cells in the gastrointestinal tract suggests the importance of cell-cell interactions in maintaining gastrointestinal homeostasis, we also discuss how GPCR-miRNA interactions regulate gene expression at the cellular level and subsequently modulate gastrointestinal pathophysiology through molecular regulatory circuits and cell-cell interactions. These studies helped identify novel molecular pathways leading to the discovery of potential biomarkers for gastrointestinal diseases.


2006 ◽  
Vol 84 (3-4) ◽  
pp. 431-441 ◽  
Author(s):  
Ghassan Bkaily ◽  
Moni Nader ◽  
Levon Avedanian ◽  
Sana Choufani ◽  
Danielle Jacques ◽  
...  

The action of several peptides and drugs is thought to be primarily dependent on their interactions with specific cell surface G-protein-coupled receptors and ionic transporters such as channels and exchangers. Recent development of 3-D confocal microscopy allowed several laboratories, including ours, to identify and study the localization of receptors, channels, and exchangers at the transcellular level of several cell types. Using this technique, we demonstrated in the nuclei of several types of cells the presence of Ca2+ channels as well as Na+–H+ exchanger and receptors such as endothelin-1 and angiotensin II receptors. Stimulation of these nuclear membrane G-protein-coupled receptors induced an increase of nuclear Ca2+. Our results suggest that, similar to the plasma membrane, nuclear membranes possess channels, exchangers and receptors such as those for endothelin-1 and angiotensin II, and that the nucleus seems to be a cell within a cell. This article will emphasize these findings.


2020 ◽  
Vol 12 (6) ◽  
pp. 523-532 ◽  
Author(s):  
Paul A Insel ◽  
Krishna Sriram ◽  
Cristina Salmerón ◽  
Shu Z Wiley

Cells in tumor microenvironments (TMEs) use several mechanisms to sense their low pH (<7.0), including via proton-sensing G protein-coupled receptors (psGPCRs): GPR4, GPR65/TDAG8, GPR68/OGR1 and GPR132/G2A. Numerous cancers have increased expression of psGPCRs. The psGPCRs may contribute to features of the malignant phenotype via actions on specific cell-types in the TME and thereby promote tumor survival and growth. Here, we review data regarding psGPCR expression in tumors and cancer cells, impact of psGPCRs on survival in solid tumors and a bioinformatics approach to infer psGPCR expression in cell types in the TME. New tools are needed to help define contributions of psGPCRs in tumor biology and to identify potentially novel therapeutic agents for a variety of cancers.


Biomolecules ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1445
Author(s):  
Takefumi Kimura ◽  
Sai P. Pydi ◽  
Jonathan Pham ◽  
Naoki Tanaka

G protein-coupled receptors (GPCRs) are cell surface receptors that mediate the function of extracellular ligands. Understanding how GPCRs work at the molecular level has important therapeutic implications, as 30–40% of the drugs currently in clinical use mediate therapeutic effects by acting on GPCRs. Like many other cell types, liver function is regulated by GPCRs. More than 50 different GPCRs are predicted to be expressed in the mouse liver. However, knowledge of how GPCRs regulate liver metabolism is limited. A better understanding of the metabolic role of GPCRs in hepatocytes, the dominant constituent cells of the liver, could lead to the development of novel drugs that are clinically useful for the treatment of various metabolic diseases, including type 2 diabetes, nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). In this review, we describe the functions of multiple GPCRs expressed in hepatocytes and their role in metabolic processes.


1998 ◽  
Vol 142 (5) ◽  
pp. 1325-1335 ◽  
Author(s):  
James E. Bear ◽  
John F. Rawls ◽  
Charles L. Saxe

G protein–coupled receptors trigger the reorganization of the actin cytoskeleton in many cell types, but the steps in this signal transduction cascade are poorly understood. During Dictyostelium development, extracellular cAMP functions as a chemoattractant and morphogenetic signal that is transduced via a family of G protein–coupled receptors, the cARs. In a strain where the cAR2 receptor gene is disrupted by homologous recombination, the developmental program arrests before tip formation. In a genetic screen for suppressors of this phenotype, a gene encoding a protein related to the Wiskott-Aldrich Syndrome protein was discovered. Loss of this protein, which we call SCAR (suppressor of cAR), restores tip formation and most later development to cAR2− strains, and causes a multiple-tip phenotype in a cAR2+ strain as well as leading to the production of extremely small cells in suspension culture. SCAR−cells have reduced levels of F-actin staining during vegetative growth, and abnormal cell morphology and actin distribution during chemotaxis. Uncharacterized homologues of SCAR have also been identified in humans, mouse, Caenorhabditis elegans, and Drosophila. These data suggest that SCAR may be a conserved negative regulator of G protein-coupled signaling, and that it plays an important role in regulating the actin cytoskeleton.


Sign in / Sign up

Export Citation Format

Share Document