scholarly journals Role of Voltage-Dependent Calcium Channel Long-Term Potentiation (LTP) and NMDA LTP in Spatial Memory

2000 ◽  
Vol 20 (24) ◽  
pp. 9272-9276 ◽  
Author(s):  
Albert M. Borroni ◽  
Harlan Fichtenholtz ◽  
Brian L. Woodside ◽  
Timothy J. Teyler
Pain ◽  
2011 ◽  
Vol 152 (3) ◽  
pp. 623-631 ◽  
Author(s):  
Soichiro Ohnami ◽  
Mitsuo Tanabe ◽  
Shunji Shinohara ◽  
Keiko Takasu ◽  
Akira Kato ◽  
...  

1998 ◽  
Vol 79 (1) ◽  
pp. 334-341 ◽  
Author(s):  
Subbakrishna Shankar ◽  
Timothy J. Teyler ◽  
Norman Robbins

Shankar, Subbakrishna, Timothy J. Teyler, and Norman Robbins. Aging differentially alters forms of long-term potentiation in rat hippocampal area CA1. J. Neurophysiol. 79: 334–341, 1998. Long-term potentiation (LTP) of the Schaffer collateral/commissural inputs to CA1 in the hippocampus was shown to consist of N-methyl-d-aspartate receptor (NMDAR) and voltage-dependent calcium channel (VDCC) dependent forms. In this study, the relative contributions of these two forms of LTP in in vitro hippocampal slices from young (2 mo) and old (24 mo) Fischer 344 rats were examined. Excitatory postsynaptic potentials (EPSP) were recorded extracellularly from stratum radiatum before and after a tetanic stimulus consisting of four 200-Hz, 0.5-s trains given 5 s apart. Under control conditions, a compound LTP consisting of both forms was induced and was similar, in both time course and magnitude, in young and old animals. NMDAR-dependent LTP (nmdaLTP), isolated by the application of 10 μM nifedipine (a voltage-dependent calcium channel blocker), was significantly reduced in magnitude in aged animals. The VDCC dependent form (vdccLTP), isolated by the application of 50 μM d,l-2-amino-5-phosphonvalerate (APV), was significantly larger in aged animals. Although both LTP forms reached stable values 40–60 min posttetanus in young animals, in aged animals vdccLTP increased and nmdaLTP decreased during this time. In both young and old animals, the sum of the two isolated LTP forms approximated the magnitude of the compound LTP, and application of APV and nifedipine or genestein (a tyrosine kinase inhibitor) together blocked potentiation. These results suggest that aging causes a shift in synaptic plasticity from NMDAR-dependent mechanisms to VDCC-dependent mechanisms. The data are consistent with previous findings of increased L-type calcium current and decreased NMDAR number in aged CA1 cells and may help explain age-related deficits in learning and memory.


PLoS ONE ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. e0165257 ◽  
Author(s):  
Akira Minami ◽  
Masakazu Saito ◽  
Shou Mamada ◽  
Daisuke Ieno ◽  
Tomoya Hikita ◽  
...  

2007 ◽  
Vol 415 (2) ◽  
pp. 174-178 ◽  
Author(s):  
Reza Lashgari ◽  
Fereshteh Motamedi ◽  
Seyed-Mohammad Noorbakhsh ◽  
Saleh Zahedi-Asl ◽  
Alireza Komaki ◽  
...  

2002 ◽  
Vol 88 (1) ◽  
pp. 249-255 ◽  
Author(s):  
Clarke R. Raymond ◽  
Stephen J. Redman

The essential role of calcium in the induction of long-term potentiation (LTP) has been well established. In particular, calcium influx via the N-methyl-d-aspartate (NMDA) receptor (NMDAR) is important for LTP induction in many pathways. However, the specific roles of other calcium sources in hippocampal LTP are less clear. The aim of the present study was to determine the appropriate conditions and extent to which non-NMDAR Ca2+ sources contribute to the induction of different forms of LTP in area CA1 of hippocampal slices. Increasing numbers of theta-burst trains (1, 4, and 8 TBS) induced LTP of increasing magnitude and persistence. Inhibition of ryanodine receptors caused inhibition of weak LTP induced by 1 TBS, but had no effect on more robust forms of LTP. Inhibition of IP3 receptors inhibited moderate LTP induced by 4 TBS, but had no effect when 1 TBS or 8 TBS were used. Inhibition of L-type voltage–dependent Ca2+ channels inhibited strong LTP induced by 8 TBS, but had no effect on weaker forms of LTP. These results show that different Ca2+ sources have different thresholds for activation by TBS trains. Furthermore, each Ca2+ source appears to be tuned to the induction of a different form of LTP. Such tuning could reflect an important link between different LTP induction and maintenance mechanisms.


Author(s):  
Sujeong Yang ◽  
Sylvain Gigout ◽  
Angelo Molinaro ◽  
Yuko Naito-Matsui ◽  
Sam Hilton ◽  
...  

AbstractPerineuronal nets (PNNs) are chondroitin sulphate proteoglycan-containing structures on the neuronal surface that have been implicated in the control of neuroplasticity and memory. Age-related reduction of chondroitin 6-sulphates (C6S) leads to PNNs becoming more inhibitory. Here, we investigated whether manipulation of the chondroitin sulphate (CS) composition of the PNNs could restore neuroplasticity and alleviate memory deficits in aged mice. We first confirmed that aged mice (20-months) showed memory and plasticity deficits. They were able to retain or regain their cognitive ability when CSs were digested or PNNs were attenuated. We then explored the role of C6S in memory and neuroplasticity. Transgenic deletion of chondroitin 6-sulfotransferase (chst3) led to a reduction of permissive C6S, simulating aged brains. These animals showed very early memory loss at 11 weeks old. Importantly, restoring C6S levels in aged animals rescued the memory deficits and restored cortical long-term potentiation, suggesting a strategy to improve age-related memory impairment.


Sign in / Sign up

Export Citation Format

Share Document