hippocampal area
Recently Published Documents


TOTAL DOCUMENTS

241
(FIVE YEARS 50)

H-INDEX

47
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Olesia M Bilash ◽  
Spyridon Chavlis ◽  
Panayiota Poirazi ◽  
Jayeeta Basu

The lateral entorhinal cortex (LEC) provides information about multi-sensory environmental cues to the hippocampus through direct inputs to the distal dendrites of CA1 pyramidal neurons. A growing body of work suggests that LEC neurons perform important functions for episodic memory processing, coding for contextually-salient elements of an environment or the experience within it. However, we know little about the functional circuit interactions between LEC and the hippocampus. In this study, we combine functional circuit mapping and computational modeling to examine how long-range glutamatergic LEC projections modulate compartment-specific excitation-inhibition dynamics in hippocampal area CA1. We demonstrate that glutamatergic LEC inputs can drive local dendritic spikes in CA1 pyramidal neurons, aided by the recruitment of a disinhibitory vasoactive intestinal peptide (VIP)-expressing inhibitory neuron microcircuit. Our circuit mapping further reveals that, in parallel, LEC also recruits cholecystokinin (CCK)-expressing inhibitory neurons, which our model predicts act as a strong suppressor of dendritic spikes. These results provide new insight into a cortically-driven GABAergic microcircuit mechanism that gates non-linear dendritic computations, which may support compartment-specific coding of multi-sensory contextual features within the hippocampus.


2022 ◽  
Author(s):  
Polymnia Georgiou ◽  
Panos Zanos ◽  
Ta-Chung M Mou ◽  
Xiaoxian An ◽  
Danielle M Gerhard ◽  
...  

Differential rodent responses to the sex of human experimenters could have far reaching consequences in preclinical studies. Here, we show that the sex of human experimenters affects mouse behaviours and responses to the rapid-acting antidepressant ketamine and its bioactive metabolite (2R,6R)-hydroxynorketamine. We found that mice manifest aversion to human male odours, preference to female odours, and increased susceptibility to stress when handled by male experimenters. This male induced aversion and stress susceptibility is mediated by the activation of brain corticotropin-releasing factor (CRF) neurons projecting from the entorhinal cortrex to hippocampal area CA1. We further establish that exposure to male scent prior to ketamine administration activates CRF neurons projecting from the entorhinal cortex to hippocampus, and that CRF is necessary and sufficient for the in vivo and in vitro actions of ketamine. Further understanding of the specific and quantitative contributions of the sex of human experimenters to different experimental outcomes in rodents may lead not only to reduced heterogeneity between studies, but also increased capability to uncover novel biological mechanisms.


2021 ◽  
pp. 102213
Author(s):  
Hugo Balleza-Tapia ◽  
Luis Enrique Arroyo-García ◽  
Arturo G. Isla ◽  
Raúl Loera-Valencia ◽  
André Fisahn

Author(s):  
Jaanaky Vigneswaran ◽  
Sivaloganathan Anogh Muthukumar ◽  
Mohamed Shafras ◽  
Geetika Pant

AbstractAccording to the World Health Organisation, as of 2019, globally around 50 million people suffer from dementia, with approximately another 10 million getting added to the list every year, wherein Alzheimer’s disease (AD) stands responsible for almost a whopping 60–70% for the existing number of cases. Alzheimer’s disease is one of the progressive, cognitive-declining, age-dependent, neurodegenerative diseases which is distinguished by histopathological symptoms, such as formation of amyloid plaque, senile plaque, neurofibrillary tangles, etc. Majorly four vital transcripts are identified in the AD complications which include Amyloid precursor protein (APP), Apolipoprotein E (ApoE), and two multi-pass transmembrane domain proteins—Presenilin 1 and 2. In addition, the formation of the abnormal filaments such as amyloid beta (Aβ) and tau and their tangling with some necessary factors contributing to the formation of plaques, neuroinflammation, and apoptosis which in turn leads to the emergence of AD. Although multiple molecular mechanisms have been elucidated so far, they are still counted as hypotheses ending with neuronal death on the basal forebrain and hippocampal area which results in AD. This review article is aimed at addressing the overview of the molecular mechanisms surrounding AD and the functional forms of the genes associated with it.


2021 ◽  
Vol 15 ◽  
Author(s):  
Luisa Fernanda Toro-Fernández ◽  
Juan Camilo Zuluaga-Monares ◽  
Ana María Saldarriaga-Cartagena ◽  
Gloria Patricia Cardona-Gómez ◽  
Rafael Posada-Duque

Glutamate excitotoxicity triggers overactivation of CDK5 and increases calcium influx in neural cells, which promotes dendritic retraction, spine loss, increased mitochondrial calcium from the endoplasmic reticulum, and neuronal death. Our previous studies showed that CDK5 knockdown (KD) in astrocytes improves neurovascular integrity and cognitive functions and exerts neuroprotective effects. However, how CDK5-targeted astrocytes affect calcium regulation and whether this phenomenon is associated with changes in neuronal plasticity have not yet been analyzed. In this study, CDK5 KD astrocytes transplanted in CA3 remained at the injection site without proliferation, regulated calcium in the CA1 hippocampal region after excitotoxicity by glutamate in ex vivo hippocampal slices, improving synapsin and PSD95 clustering. These CDK5 KD astrocytes induced astrocyte stellation and neuroprotection after excitotoxicity induced by glutamate in vitro. Also, these effects were supported by CDK5 inhibition (CDK5i) in vitro through intracellular stabilization of calcium levels in astrocytes. Additionally, these cells in cocultures restored calcium homeostasis in neurons, redistributing calcium from somas to dendrites, accompanied by dendrite branching, higher dendritic spines and synapsin-PSD95 clustering. In summary, induction of calcium homeostasis at the CA1 hippocampal area by CDK5 KD astrocytes transplanted in the CA3 area highlights the role of astrocytes as a cell therapy target due to CDK5-KD astrocyte-mediated synaptic clustering, calcium spreading regulation between both areas, and recovery of the intracellular astrocyte-neuron calcium imbalance and plasticity impairment generated by glutamate excitotoxicity.


2021 ◽  
Author(s):  
Aaron D Milstein ◽  
Sarah Tran ◽  
Grace Ng ◽  
Ivan Soltesz

During spatial exploration, neural circuits in the hippocampus store memories of sequences of sensory events encountered in the environment. When sensory information is absent during "offline" resting periods, brief neuronal population bursts can "replay" sequences of activity that resemble bouts of sensory experience. These sequences can occur in either forward or reverse order, and can even include spatial trajectories that have not been experienced, but are consistent with the topology of the environment. The neural circuit mechanisms underlying this variable and flexible sequence generation are unknown. Here we demonstrate in a recurrent spiking network model of hippocampal area CA3 that experimental constraints on network dynamics such as spike rate adaptation, population sparsity, stimulus selectivity, and rhythmicity enable additional emergent properties, including variable offline memory replay. In an online stimulus-driven state, we observed the emergence of neuronal sequences that swept from representations of past to future stimuli on the timescale of the theta rhythm. In an offline state driven only by noise, the network generated both forward and reverse neuronal sequences, and recapitulated the experimental observation that offline memory replay events tend to include salient locations like the site of a reward. These results demonstrate that biological constraints on the dynamics of recurrent neural circuits are sufficient to enable memories of sensory events stored in the strengths of synaptic connections to be flexibly read out during rest and sleep, which is thought to be important for memory consolidation and planning of future behavior.


Sign in / Sign up

Export Citation Format

Share Document