scholarly journals Impairment of Mossy Fiber Long-Term Potentiation and Associative Learning in Pituitary Adenylate Cyclase Activating Polypeptide Type I Receptor-Deficient Mice

2001 ◽  
Vol 21 (15) ◽  
pp. 5520-5527 ◽  
Author(s):  
Christiane Otto ◽  
Yury Kovalchuk ◽  
David Paul Wolfer ◽  
Peter Gass ◽  
Miguel Martin ◽  
...  
1998 ◽  
Vol 18 (9) ◽  
pp. 3186-3194 ◽  
Author(s):  
Enrique C. Villacres ◽  
Scott T. Wong ◽  
Charles Chavkin ◽  
Daniel R. Storm

1994 ◽  
Vol 14 (12) ◽  
pp. 8272-8281
Author(s):  
S Impey ◽  
G Wayman ◽  
Z Wu ◽  
D R Storm

Studies carried out with mammals and invertebrates suggest that Ca(2+)-sensitive adenylyl cyclases may be important for neuroplasticity. Long-term potentiation in the hippocampus requires increases in intracellular Ca2+ which are accompanied by elevated cyclic AMP (cAMP). Furthermore, activation of cAMP-dependent protein kinase is required for the late stage of long-term potentiation in the CA1 region of the hippocampus, which is also sensitive to inhibitors of transcription. Therefore, some forms of synaptic plasticity may require coordinate regulation of transcription by Ca2+ and cAMP. In this study, we demonstrate that the expression of type I adenylyl cyclase in HEK-293 cells allows Ca2+ to stimulate reporter gene activity mediated through the cAMP response element. Furthermore, simultaneous activation by Ca2+ and isoproterenol caused synergistic stimulation of transcription in HEK-293 cells and cultured neurons. We propose that Ca2+ and neurotransmitter stimulation of type I adenylyl cyclase may play a role in synaptic plasticity by generating optimal cAMP signals for regulation of transcription.


Hippocampus ◽  
2013 ◽  
Vol 23 (6) ◽  
pp. 529-543 ◽  
Author(s):  
Grzegorz Wiera ◽  
Grazyna Wozniak ◽  
Malgorzata Bajor ◽  
Leszek Kaczmarek ◽  
Jerzy W. Mozrzymas

Sign in / Sign up

Export Citation Format

Share Document