scholarly journals Structure–Function Relationships between Aldolase C/Zebrin II Expression and Complex Spike Synchrony in the Cerebellum

2015 ◽  
Vol 35 (2) ◽  
pp. 843-852 ◽  
Author(s):  
Shinichiro Tsutsumi ◽  
Maya Yamazaki ◽  
Taisuke Miyazaki ◽  
Masahiko Watanabe ◽  
Kenji Sakimura ◽  
...  
2006 ◽  
Vol 31 (11) ◽  
pp. 1297-1303 ◽  
Author(s):  
Stephanie Linke ◽  
Philipp Goertz ◽  
Stephan L. Baader ◽  
Volkmar Gieselmann ◽  
Mario Siebler ◽  
...  

2002 ◽  
Vol 87 (4) ◽  
pp. 1993-2008 ◽  
Author(s):  
Eric J. Lang

Olivocerebellar activity is organized such that synchronous complex spikes occur primarily among Purkinje cells located within the same parasagittally oriented strip of cortex. Previous findings have shown that this synchrony distribution is modulated by the release of GABA and glutamate within the inferior olive, which probably act by controlling the efficacy of the electrotonic coupling between olivary neurons. The relative strengths of these two neurotransmitters in modulating the patterns of synchrony were compared by obtaining multiple electrode recordings of spontaneous crus 2a complex spike activity during intraolivary injection of solutions containing a GABAA (picrotoxin) and/or AMPA [1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide disodium (NBQX)] receptor antagonist. Injection of either antagonist led to increased synchrony between cells located within the same parasagittally oriented ≈250-μm-wide cortical strip. Picrotoxin also increased complex spike synchrony among cells located in different cortical strips, leading to a less prominent banding pattern, whereas injections of NBQX tended to decrease complex spike synchrony among such cells, enhancing the banding pattern. The relative strength of these two classes of olivary afferents was assessed by first injecting one of the antagonists alone and then in combination with the other. The enhanced banding pattern of complex spike synchrony following injection of NBQX alone remained during the subsequent combined injection of both antagonists. Furthermore, the widespread synchronization of complex spike activity following injection of picrotoxin alone was partially or completely reversed by combined injection of picrotoxin and NBQX. Changes in the climbing fiber reflex induced by the intraolivary injections paralleled the changes observed for spontaneous complex spike activity, indicating that the effects of picrotoxin and NBQX on the synchrony distribution reflect changes in the pattern of effective coupling of inferior olivary neurons and demonstrating that synchronous complex spike activity does not require simultaneous excitatory input to olivary cells. Finally the pattern of synchrony during motor cortical stimulation was examined. It was found that the patterns of synchrony for motor-cortex-evoked complex spike activity were similar to those of spontaneous activity, indicating an important role for electrotonic coupling in determining the response of the olivocerebellar system to afferent input. Moreover, intraolivary injections of picrotoxin increased the spatial distribution of the evoked response. In sum, the results provide evidence for the hypothesis that electrotonic coupling of inferior olivary neurons via gap junctions is the mechanism underlying complex spike synchrony and that this coupling plays an important role in determining the responses of the olivocerebellar system to synaptic input.


2006 ◽  
Vol 573 (1) ◽  
pp. 277-279 ◽  
Author(s):  
Eric J. Lang ◽  
Rodolfo Llinás ◽  
Izumi Sugihara

PLoS ONE ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. e0117539 ◽  
Author(s):  
Joel W. Aspden ◽  
Carol L. Armstrong ◽  
Cristian I. Gutierrez-Ibanez ◽  
Richard Hawkes ◽  
Andrew N. Iwaniuk ◽  
...  

2003 ◽  
Vol 2 (3) ◽  
pp. 165-170
Author(s):  
Eric J Lang

2018 ◽  
Vol 120 (1) ◽  
pp. 250-262 ◽  
Author(s):  
Rebecca M. Long ◽  
Janelle M. P. Pakan ◽  
David J. Graham ◽  
Peter L. Hurd ◽  
Cristian Gutierrez-Ibañez ◽  
...  

The cerebellum is organized into parasagittal zones defined by its climbing and mossy fiber inputs, efferent projections, and Purkinje cell (PC) response properties. Additionally, parasagittal stripes can be visualized with molecular markers, such as heterogeneous expression of the isoenzyme zebrin II (ZII), where sagittal stripes of high ZII expression (ZII+) are interdigitated with stripes of low ZII expression (ZII−). In the pigeon vestibulocerebellum, a ZII+/− stripe pair represents a functional unit, insofar as both ZII+ and ZII− PCs within a stripe pair respond best to the same pattern of optic flow. In the present study, we attempted to determine whether there were any differences in the responses between ZII+ and ZII− PCs within a functional unit in response to optic flow stimuli. In pigeons of either sex, we recorded complex spike activity (CSA) from PCs in response to optic flow, marked recording sites with a fluorescent tracer, and determined the ZII identity of recorded PCs by immunohistochemistry. We found that CSA of ZII+ PCs showed a greater depth of modulation in response to the preferred optic flow pattern compared with ZII− PCs. We suggest that these differences in the depth of modulation to optic flow stimuli are due to differences in the connectivity of ZII+ and ZII− PCs within a functional unit. Specifically, ZII+ PCs project to areas of the vestibular nuclei that provide inhibitory feedback to the inferior olive, whereas ZII− PCs do not. NEW & NOTEWORTHY Although the cerebellum appears to be a uniform structure, Purkinje cells (PCs) are heterogeneous and can be categorized on the basis of the expression of molecular markers. These phenotypes are conserved across species, but the significance is undetermined. PCs in the vestibulocerebellum encode optic flow resulting from self-motion, and those that express the molecular marker zebrin II (ZII+) exhibit more sensitivity to optic flow than those that do not express zebrin II (ZII−).


Sign in / Sign up

Export Citation Format

Share Document