Excitatory afferent modulation of complex spike synchrony

2003 ◽  
Vol 2 (3) ◽  
pp. 165-170
Author(s):  
Eric J Lang
2002 ◽  
Vol 87 (4) ◽  
pp. 1993-2008 ◽  
Author(s):  
Eric J. Lang

Olivocerebellar activity is organized such that synchronous complex spikes occur primarily among Purkinje cells located within the same parasagittally oriented strip of cortex. Previous findings have shown that this synchrony distribution is modulated by the release of GABA and glutamate within the inferior olive, which probably act by controlling the efficacy of the electrotonic coupling between olivary neurons. The relative strengths of these two neurotransmitters in modulating the patterns of synchrony were compared by obtaining multiple electrode recordings of spontaneous crus 2a complex spike activity during intraolivary injection of solutions containing a GABAA (picrotoxin) and/or AMPA [1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide disodium (NBQX)] receptor antagonist. Injection of either antagonist led to increased synchrony between cells located within the same parasagittally oriented ≈250-μm-wide cortical strip. Picrotoxin also increased complex spike synchrony among cells located in different cortical strips, leading to a less prominent banding pattern, whereas injections of NBQX tended to decrease complex spike synchrony among such cells, enhancing the banding pattern. The relative strength of these two classes of olivary afferents was assessed by first injecting one of the antagonists alone and then in combination with the other. The enhanced banding pattern of complex spike synchrony following injection of NBQX alone remained during the subsequent combined injection of both antagonists. Furthermore, the widespread synchronization of complex spike activity following injection of picrotoxin alone was partially or completely reversed by combined injection of picrotoxin and NBQX. Changes in the climbing fiber reflex induced by the intraolivary injections paralleled the changes observed for spontaneous complex spike activity, indicating that the effects of picrotoxin and NBQX on the synchrony distribution reflect changes in the pattern of effective coupling of inferior olivary neurons and demonstrating that synchronous complex spike activity does not require simultaneous excitatory input to olivary cells. Finally the pattern of synchrony during motor cortical stimulation was examined. It was found that the patterns of synchrony for motor-cortex-evoked complex spike activity were similar to those of spontaneous activity, indicating an important role for electrotonic coupling in determining the response of the olivocerebellar system to afferent input. Moreover, intraolivary injections of picrotoxin increased the spatial distribution of the evoked response. In sum, the results provide evidence for the hypothesis that electrotonic coupling of inferior olivary neurons via gap junctions is the mechanism underlying complex spike synchrony and that this coupling plays an important role in determining the responses of the olivocerebellar system to synaptic input.


2006 ◽  
Vol 573 (1) ◽  
pp. 277-279 ◽  
Author(s):  
Eric J. Lang ◽  
Rodolfo Llinás ◽  
Izumi Sugihara

2015 ◽  
Vol 35 (2) ◽  
pp. 843-852 ◽  
Author(s):  
Shinichiro Tsutsumi ◽  
Maya Yamazaki ◽  
Taisuke Miyazaki ◽  
Masahiko Watanabe ◽  
Kenji Sakimura ◽  
...  

1997 ◽  
Vol 77 (4) ◽  
pp. 1747-1758 ◽  
Author(s):  
C. I. De Zeeuw ◽  
S.K.E. Koekkoek ◽  
D.R.W. Wylie ◽  
J. I. Simpson

De Zeeuw, C. I., S.K.E. Koekkoek, D.R.W. Wylie, and J. I. Simpson. Association between dendritic lamellar bodies and complex spike synchrony in the olivocerebellar system. J. Neurophysiol. 77: 1747–1758, 1997. Dendritic lamellar bodies have been reported to be associated with dendrodendritic gap junctions. In the present study we investigated this association at both the morphological and electrophysiological level in the olivocerebellar system. Because cerebellar GABAergic terminals are apposed to olivary dendrites coupled by gap junctions, and because lesions of cerebellar nuclei influence the coupling between neurons in the inferior olive, we postulated that if lamellar bodies and gap junctions are related, then the densities of both structures will change together when the cerebellar input is removed. Lesions of the cerebellar nuclei in rats and rabbits resulted in a reduction of the density of lamellar bodies, the number of lamellae per lamellar body, and the density of gap junctions in the inferior olive, whereas the number of olivary neurons was not significantly reduced. The association between lamellar bodies and electrotonic coupling was evaluated electrophysiologically in alert rabbits by comparing the occurrence of complex spike synchrony in different Purkinje cell zones of the flocculus that receive their climbing fibers from olivary subnuclei with different densities of lamellar bodies. The complex spike synchrony of Purkinje cell pairs, that receive their climbing fibers from an olivary subnucleus with a high density of lamellar bodies, was significantly higher than that of Purkinje cells, that receive their climbing fibers from a subnucleus with a low density of lamellar bodies. To investigate whether the complex spike synchrony is related to a possible synchrony between simple spikes, we recorded simultaneously the complex spike and simple spike responses of Purkinje cell pairs during natural visual stimulation. Synchronous simple spike responses did occur, and this synchrony tended to increase as the synchrony between the complex spikes increased. This relation raises the possibility that synchronously activated climbing fibers evoke their effects in part via the simple spike response of Purkinje cells. The present results indicate that dendritic lamellar bodies and dendrodendritic gap junctions can be downregulated concomitantly, and that the density of lamellar bodies in different olivary subdivisions is correlated with the degree of synchrony of their climbing fiber activity. Therefore these data support the hypothesis that dendritic lamellar bodies can be associated with dendrodendritic gap junctions. Considering that the density of dedritic lamellar bodies in the inferior olive is higher than in any other area of the brain, this conclusion implies that electrotonic coupling is important for the function of the olivocerebellar system.


2014 ◽  
Vol 34 (27) ◽  
pp. 8937-8947 ◽  
Author(s):  
J. R. De Gruijl ◽  
T. M. Hoogland ◽  
C. I. De Zeeuw

Sign in / Sign up

Export Citation Format

Share Document