scholarly journals Fast Sodium Channel Gating Supports Localized and Efficient Axonal Action Potential Initiation

2010 ◽  
Vol 30 (30) ◽  
pp. 10233-10242 ◽  
Author(s):  
C. Schmidt-Hieber ◽  
J. Bischofberger
1999 ◽  
Vol 82 (6) ◽  
pp. 3006-3020 ◽  
Author(s):  
Gongyu Y. Shen ◽  
Wei R. Chen ◽  
Jens Midtgaard ◽  
Gordon M. Shepherd ◽  
Michael L. Hines

In olfactory mitral cells, dual patch recordings show that the site of action potential initiation can shift between soma and distal primary dendrite and that the shift is dependent on the location and strength of electrode current injection. We have analyzed the mechanisms underlying this shift, using a model of the mitral cell that takes advantage of the constraints available from the two recording sites. Starting with homogeneous Hodgkin-Huxley-like Na+-K+ channel distribution in the soma-dendritic region and much higher sodium channel density in the axonal region, the model's channel kinetics and density were adjusted by a fitting algorithm so that the model response was virtually identical to the experimental data. The combination of loading effects and much higher sodium channel density in the axon relative to the soma-dendritic region results in significantly lower “voltage threshold” for action potential initiation in the axon; the axon therefore fires first unless the voltage gradient in the primary dendrite is steep enough for it to reach its higher threshold. The results thus provide a quantitative explanation for the stimulus strength and position dependence of the site of action potential initiation in the mitral cell.


2011 ◽  
Vol 105 (1) ◽  
pp. 366-379 ◽  
Author(s):  
Patricio Rojas ◽  
Alejandro Akrouh ◽  
Lawrence N. Eisenman ◽  
Steven Mennerick

GABAA receptors are found on the somatodendritic compartment and on the axon initial segment of many principal neurons. The function of axonal receptors remains obscure, although it is widely assumed that axonal receptors must have a strong effect on excitability. We found that activation of GABAA receptors on the dentate granule neuron axon initial segment altered excitability by depolarizing the voltage threshold for action potential initiation under conditions that minimally affected overall cell input resistance. In contrast, activation of somatic GABAA receptors strongly depressed the input resistance of granule neurons without affecting the voltage threshold of action potential initiation. Although these effects were observed over a range of intracellular chloride concentrations, average voltage threshold was unaffected when ECl rendered GABAA axon initial segment responses explicitly excitatory. A compartment model of a granule neuron confirmed these experimental observations. Low ambient agonist concentrations designed to activate granule neuron tonic currents did not stimulate axonal receptors sufficiently to raise voltage threshold. Using excitatory postsynaptic current (EPSC)-like depolarizations, we show physiological consequences of axonal versus somatic GABAA receptor activation. With axonal inhibition, individual excitatory postsynaptic potentials (EPSPs) largely retained their amplitude and time course, but EPSPs that were suprathreshold under basal conditions failed to reach threshold with GABAA activation. By contrast, somatic inhibition depressed individual EPSPs because of strong shunting. Our results suggest that axonal GABAA receptors have a privileged effect on voltage threshold and that two major measures of neuronal excitability, voltage threshold and rheobase, are differentially affected by axonal and somatic GABAA receptor activation.


2018 ◽  
Vol 596 (21) ◽  
pp. 5067-5068
Author(s):  
Aurélie Fékété ◽  
Dominique Debanne

Sign in / Sign up

Export Citation Format

Share Document