cortical stimulation
Recently Published Documents


TOTAL DOCUMENTS

875
(FIVE YEARS 109)

H-INDEX

76
(FIVE YEARS 6)

2022 ◽  
Vol 12 ◽  
Author(s):  
Auriana Irannejad ◽  
Ganne Chaitanya ◽  
Emilia Toth ◽  
Diana Pizarro ◽  
Sandipan Pati

Accurate mapping of the seizure onset zone (SOZ) is critical to the success of epilepsy surgery outcomes. Epileptogenicity index (EI) is a statistical method that delineates hyperexcitable brain regions involved in the generation and early propagation of seizures. However, EI can overestimate the SOZ for particular electrographic seizure onset patterns. Therefore, using direct cortical stimulation (DCS) as a probing tool to identify seizure generators, we systematically evaluated the causality of the high EI nodes (>0.3) in replicating the patient's habitual seizures. Specifically, we assessed the diagnostic yield of high EI nodes, i.e., the proportion of high EI nodes that evoked habitual seizures. A retrospective single-center study that included post-stereo encephalography (SEEG) confirmed TLE patients (n = 37) that had all high EI nodes stimulated, intending to induce a seizure. We evaluated the nodal responses (true and false responder rate) to stimulation and correlated with electrographic seizure onset patterns (hypersynchronous-HYP and low amplitude fast activity patterns-LAFA) and clinically defined SOZ. The ictogenicity (i.e., the propensity to induce the patient's habitual seizure) of a high EI node was only 44.5%. The LAFA onset pattern had a significantly higher response rate to DCS (i.e., higher evoked seizures). The concordance of an evoked habitual seizure with a clinically defined SOZ with good outcomes was over 50% (p = 0.0025). These results support targeted mapping of SOZ in LAFA onset patterns by performing DCS in high EI nodes to distinguish seizure generators (true responders) from hyperexcitable nodes that may be involved in early propagation.


Author(s):  
Ben Shofty ◽  
Tal Gonen ◽  
Eyal Bergmann ◽  
Naama Mayseless ◽  
Akiva Korn ◽  
...  

AbstractCreative thinking represents a major evolutionary mechanism that greatly contributed to the rapid advancement of the human species. The ability to produce novel and useful ideas, or original thinking, is thought to correlate well with unexpected, synchronous activation of several large-scale, dispersed cortical networks, such as the default network (DN). Despite a vast amount of correlative evidence, a causal link between default network and creativity has yet to be demonstrated. Surgeries for resection of brain tumors that lie in proximity to speech related areas are performed while the patient is awake to map the exposed cortical surface for language functions. Such operations provide a unique opportunity to explore human behavior while disrupting a focal cortical area via focal electrical stimulation. We used a novel paradigm of individualized direct cortical stimulation to examine the association between creative thinking and the DN. Preoperative resting-state fMRI was used to map the DN in individual patients. A cortical area identified as a DN node (study) or outside the DN (controls) was stimulated while the participants performed an alternate-uses-task (AUT). This task measures divergent thinking through the number and originality of different uses provided for an everyday object. Baseline AUT performance in the operating room was positively correlated with DN integrity. Direct cortical stimulation at the DN node resulted in decreased ability to produce alternate uses, but not in the originality of uses produced. Stimulation in areas that when used as network seed regions produced a network similar to the canonical DN was associated with reduction of creative fluency. Stimulation of areas that did not produce a default-like network (controls) did not alter creative thinking. This is the first study to causally link the DN and creative thinking.


2021 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
Evan M. Dastin-van Rijn ◽  
Seth D. König ◽  
Danielle Carlson ◽  
Vasudha Goel ◽  
Andrew Grande ◽  
...  

Central pain disorders, such as central post-stroke pain, remain clinically challenging to treat, despite many decades of pharmacological advances and the evolution of neuromodulation. For treatment refractory cases, previous studies have highlighted some benefits of cortical stimulation. Recent advances in new targets for pain and the optimization of neuromodulation encouraged our group to develop a dual cortical target approach paired with Bayesian optimization to provide a personalized treatment. Here, we present a case report of a woman who developed left-sided facial pain after multiple thalamic strokes. All previous pharmacologic and interventional treatments failed to mitigate the pain, leaving her incapacitated due to pain and medication side effects. She subsequently underwent a single burr hole for placement of motor cortex (M1) and dorsolateral prefrontal cortex (dlPFC) paddles for stimulation with externalization. By using Bayesian optimization to find optimal stimulation parameters and stimulation sites, we were able to reduce pain from an 8.5/10 to a 0/10 during a 5-day inpatient stay, with pain staying at or below a 2/10 one-month post-procedure. We found optimal treatment to be simultaneous stimulation of M1 and dlPFC without any evidence of seizure induction. In addition, we found no worsening in cognitive performance during a working memory task with dlPFC stimulation. This personalized approach using Bayesian optimization may provide a new foundation for treating central pain and other functional disorders through systematic evaluation of stimulation parameters.


2021 ◽  
Vol 15 ◽  
Author(s):  
Richy Yun ◽  
Andrew R. Bogaard ◽  
Andrew G. Richardson ◽  
Stavros Zanos ◽  
Steve I. Perlmutter ◽  
...  

Cortical stimulation (CS) of the motor cortex can cause excitability changes in both hemispheres, showing potential to be a technique for clinical rehabilitation of motor function. However, previous studies that have investigated the effects of delivering CS during movement typically focus on a single hemisphere. On the other hand, studies exploring interhemispheric interactions typically deliver CS at rest. We sought to bridge these two approaches by documenting the consequences of delivering CS to a single motor cortex during different phases of contralateral and ipsilateral limb movement, and simultaneously assessing changes in interactions within and between the hemispheres via local field potential (LFP) recordings. Three macaques were trained in a unimanual reaction time (RT) task and implanted with epidural or intracortical electrodes over bilateral motor cortices. During a given session CS was delivered to one hemisphere with respect to movements of either the contralateral or ipsilateral limb. Stimulation delivered before contralateral limb movement onset shortened the contralateral limb RT. In contrast, stimulation delivered after the end of contralateral movement increased contralateral RT but decreased ipsilateral RT. Stimulation delivered before ipsilateral limb movement decreased ipsilateral RT. All other stimulus conditions as well as random stimulation and periodic stimulation did not have consistently significant effects on either limb. Simultaneous LFP recordings from one animal revealed correlations between changes in interhemispheric alpha band coherence and changes in RT, suggesting that alpha activity may be indicative of interhemispheric communication. These results show that changes caused by CS to the functional coupling within and between precentral cortices is contingent on the timing of CS relative to movement.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ahmad Khatoun ◽  
Boateng Asamoah ◽  
Myles Mc Laughlin

Background: Epicranial cortical stimulation (ECS) is a minimally invasive neuromodulation technique that works by passing electric current between subcutaneous electrodes positioned on the skull. ECS causes a stronger and more focused electric field in the cortex compared to transcranial electric stimulation (TES) where the electrodes are placed on the scalp. However, it is unknown if ECS can target deeper regions where the electric fields become relatively weak and broad. Recently, interferential stimulation (IF) using scalp electrodes has been proposed as a novel technique to target subcortical regions. During IF, two high, but slightly different, frequencies are applied which sum to generate a low frequency field (i.e., 10 Hz) at a target subcortical region. We hypothesized that IF using ECS electrodes would cause stronger and more focused subcortical stimulation than that using TES electrodes.Objective: Use computational modeling to determine if interferential stimulation-epicranial cortical stimulation (IF-ECS) can target subcortical regions. Then, compare the focality and field strength of IF-ECS to that of interferential Stimulation-transcranial electric stimulation (IF-TES) in the same subcortical region.Methods: A human head computational model was developed with 19 TES and 19 ECS disk electrodes positioned on a 10–20 system. After tetrahedral mesh generation the model was imported to COMSOL where the electric field distribution was calculated for each electrode separately. Then in MATLAB, subcortical targets were defined and the optimal configurations were calculated for both the TES and ECS electrodes.Results: Interferential stimulation using ECS electrodes can deliver stronger and more focused electric fields to subcortical regions than IF using TES electrodes.Conclusion: Interferential stimulation combined with ECS is a promising approach for delivering subcortical stimulation without the need for a craniotomy.


2021 ◽  
Vol 122 ◽  
pp. 108125
Author(s):  
Eloise Hotolean ◽  
Laure Mazzola ◽  
Sylvain Rheims ◽  
Jean Isnard ◽  
Alexandra Montavont ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document