On an integral formula for differential forms and its applications on manifolds with boundary

Analysis ◽  
2013 ◽  
Vol 33 (4) ◽  
Author(s):  
Gyula Csató
2019 ◽  
Vol 30 (5) ◽  
pp. 920-929
Author(s):  
Serap Gürer ◽  
Patrick Iglesias-Zemmour

Author(s):  
M. F. Atiyah ◽  
V. K. Patodi ◽  
I. M. Singer

1. Introduction. The main purpose of this paper is to present a generalization of Hirzebruch's signature theorem for the case of manifolds with boundary. Our result is in the framework of Riemannian geometry and can be viewed as analogous to the Gauss–Bonnet theorem for manifolds with boundary, although there is a very significant difference between the two cases which is, in a sense, the central topic of the paper. To explain this difference let us begin by recalling that the classical Gauss–Bonnet theorem for a surface X with boundary Y asserts that the Euler characteristic E(X) is given by a formula:where K is the Gauss curvature of X and σ is the geodesic curvature of Y in X. In particular if, near the boundary, X is isometric to the product Y x R+, the boundary integral in (1.1) vanishes and the formula is the same as for closed surfaces. Similar remarks hold in higher dimensions. Now if X is a closed oriented Riemannian manifold of dimension 4, there is another formula relating cohomological invariants with curvature in addition to the Gauss–Bonnet formula. This expresses the signature of the quadratic form on H2(X, R) by an integral formulawhere p1 is the differential 4-form representing the first Pontrjagin class and is given in terms of the curvature matrix R by p1 = (2π)−2Tr R2. It is natural to ask if (1.2) continues to hold for manifolds with boundary, provided the metric is a product near the boundary. Simple examples show that this is false, so that in general


Author(s):  
Alexander Strohmaier

AbstractIn this article I give a rigorous construction of the classical and quantum photon field on non-compact manifolds with boundary and in possibly inhomogeneous media. Such a construction is complicated by zero-modes that appear in the presence of non-trivial topology of the manifold or the boundary. An important special case is $${\mathbb {R}}^3$$ R 3 with obstacles. In this case the zero modes have a direct interpretation in terms of the topology of the obstacle. I give a formula for the renormalised stress energy tensor in terms of an integral kernel of an operator defined by spectral calculus of the Laplace Beltrami operator on differential forms with relative boundary conditions.


1998 ◽  
Vol 18 (2) ◽  
pp. 405-424 ◽  
Author(s):  
O. S. KOZLOVSKI

In this paper we consider a smooth dynamical system $f$ and give estimates of the growth rates of vector fields and differential forms in the $L_p$ norm under the action of the dynamical system in terms of entropy, topological pressure and Lyapunov exponents. We prove a formula for the topological entropy $$h_{\rm top}=\lim_{n\to\infty} \frac 1n \log \int \Vert Df_x^n\,^{\wedge}\Vert \,dx,$$ where $Df_x^n\,^{\wedge}$ is a mapping between full exterior algebras of the tangent spaces. An analogous formula is given for the topological pressure.


Sign in / Sign up

Export Citation Format

Share Document