scholarly journals An ancient antisense‐driven RNA switch drives plant sex determination

2019 ◽  
Vol 38 (6) ◽  
Author(s):  
Frédéric Berger
2021 ◽  
Author(s):  
Sarah Carey ◽  
Qingyi Yu ◽  
Alex Harkess

For centuries scientists have been intrigued by the origin of dioecy in plants, characterizing sex-specific development, uncovering cytological differences between the sexes, and developing theoretical models. However, through the invention and continued improvements in genomic technologies, we have truly begun to unlock the genetic basis of dioecy in many species. Here we broadly review the advances in research on dioecy and sex chromosomes. We start by first discussing the early works that built the foundation for current studies and the advances in genome sequencing that have facilitated more-recent findings. We next discuss the analyses of sex chromosomes and sex-determination genes uncovered by genome sequencing. We synthesize these results to find some patterns are emerging, such as the role of duplications, the involvement of hormones in sex-determination, and support for the two-locus model for the origin of dioecy. Though across systems, there also many novel insights into how sex chromosomes evolve, including different sex-determining genes and routes to suppressed recombination. We propose the future of research in plant sex chromosomes should involve interdisciplinary approaches, combining cutting-edge technologies with the classics to unravel the patterns that can be found across the hundreds of independent origins.


Heredity ◽  
2002 ◽  
Vol 88 (2) ◽  
pp. 94-101 ◽  
Author(s):  
D Charlesworth

Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 381
Author(s):  
Sarah Carey ◽  
Qingyi Yu ◽  
Alex Harkess

For centuries, scientists have been intrigued by the origin of dioecy in plants, characterizing sex-specific development, uncovering cytological differences between the sexes, and developing theoretical models. Through the invention and continued improvements in genomic technologies, we have truly begun to unlock the genetic basis of dioecy in many species. Here we broadly review the advances in research on dioecy and sex chromosomes. We start by first discussing the early works that built the foundation for current studies and the advances in genome sequencing that have facilitated more-recent findings. We next discuss the analyses of sex chromosomes and sex-determination genes uncovered by genome sequencing. We synthesize these results to find some patterns are emerging, such as the role of duplications, the involvement of hormones in sex-determination, and support for the two-locus model for the origin of dioecy. Though across systems, there are also many novel insights into how sex chromosomes evolve, including different sex-determining genes and routes to suppressed recombination. We propose the future of research in plant sex chromosomes should involve interdisciplinary approaches, combining cutting-edge technologies with the classics to unravel the patterns that can be found across the hundreds of independent origins.


2017 ◽  
Vol 27 (5) ◽  
pp. R191-R197 ◽  
Author(s):  
John R. Pannell
Keyword(s):  

2018 ◽  
Author(s):  
Veronika Balounova, ◽  
Roman Gogela ◽  
Radim Cegan ◽  
Patrik Cangren ◽  
Jitka Zluvova ◽  
...  

AbstractSwitches in heterogamety occasionally occur both in animals and plants, although plant sex determination systems are mostly more recently evolved than those of animals, and have had less time for switches to occur. However, our previous research revealed a switch in heterogamety in section Otites of the plant genus Silene.Here we analyse in detail the evolution of genetic sex determination in section Otites, which is estimated to have evolved about 0.55 MYA. Our study confirms female heterogamety in S. otites and newly reveals female heterogamety in S. borysthenica. Sequence analyses and genetic mapping show that the sex-linked regions of these two species are the same, but the region in S. colpophylla, a close relative with male heterogamety, is different. The sex chromosome pairs of S. colpophylla and S. otites each correspond to an autosome of the other species, and both differ from the XY pair in S. latifolia, in a different section of the genus. Our phylogenetic analysis suggests a possible change from female to male heterogamety within Silene section Otites, making these species suitable for detailed studies of the events involved.


Nature ◽  
1996 ◽  
Vol 379 (6562) ◽  
pp. 201-201
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document