beam irradiation
Recently Published Documents


TOTAL DOCUMENTS

5364
(FIVE YEARS 774)

H-INDEX

79
(FIVE YEARS 11)

Author(s):  
P. S. Vergeles ◽  
Yu Kulanchikov ◽  
Alexander Y Polyakov ◽  
Eugene B. Yakimov ◽  
Stephen J. Pearton

Abstract To achieve low leakage in GaN-based power devices and improve reliability in optoelectronic devices such as laser diodes, it is necessary to reduce dislocation density in epitaxial layers and control their introduction during processing. We have previously shown that dislocations can be introduced at room temperature in GaN. The effect of electron-beam irradiation at fixed points on the shift of such freshly introduced dislocations in GaN is reported. Dislocations can be displaced up to 10-15 µm from the beam position. We conclude the main reason limiting the dislocation travelling distance is the existence of a high number of pinning sites.


2022 ◽  
Vol 6 (1) ◽  
pp. 25
Author(s):  
Oliver Voigt ◽  
Beate Krause ◽  
Petra Pötschke ◽  
Michael T. Müller ◽  
Sven Wießner

The thermoelectric behavior of polypropylene (PP) based nanocomposites containing single walled carbon nanotubes (SWCNTs) and five kinds of ionic liquids (Ils) dependent on composite composition and electron beam irradiation (EB) was studied. Therefore, several samples were melt-mixed in a micro compounder, while five Ils with sufficiently different anions and/or cations were incorporated into the PP/SWCNT composites followed by an EB treatment for selected composites. Extensive investigations were carried out considering the electrical, thermal, mechanical, rheological, morphological and, most significantly, thermoelectric properties. It was found that it is possible to prepare n-type melt-mixed polymer composites from p-type commercial SWCNTs with relatively high Seebeck coefficients when adding four of the selected Ils. The highest Seebeck coefficients achieved in this study were +49.3 µV/K (PP/2 wt.% SWCNT) for p-type composites and −27.6 µV/K (PP/2 wt.% SWCNT/4 wt.% IL type AMIM Cl) for n-type composites. Generally, the type of IL is decisive whether p- or n-type thermoelectric behavior is achieved. After IL addition higher volume conductivity could be reached. Electron beam treatment of PP/SWCNT leads to increased values of the Seebeck coefficient, whereas the EB treated sample with IL (AMIM Cl) shows a less negative Seebeck coefficient value.


Author(s):  
Lior Shani ◽  
Avital Fried ◽  
Yafit Fleger ◽  
Olga Girshevitz ◽  
Amos Sharoni ◽  
...  

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 196
Author(s):  
Xin Wu ◽  
Ruxue Yang ◽  
Xiyue Chen ◽  
Wei Liu

Nanopore structure presents great application potential especially in the area of biosensing. The two-dimensional (2D) vdW heterostructure nanopore shows unique features, while research around its fabrication is very limited. This paper proposes for the first time the use of ion beam irradiation for creating nanopore structure in 2D vdW graphene-MoS2 heterostructures. The formation process of the heterostructure nanopore is discussed first. Then, the influence of ion irradiation parameters (ion energy and ion dose) is illustrated, based on which the optimal irradiation parameters are derived. In particular, the effect of stacking order of the heterostructure 2D layers on the induced phenomena and optimal parameters are taken into consideration. Finally, uniaxial tensile tests are conducted by taking the effect of irradiation parameters, nanopore size and stacking order into account to demonstrate the mechanical performance of the heterostructure for use under a loading condition. The results would be meaningful for expanding the applications of heterostructure nanopore structure, and can arouse more research interest in this area.


2022 ◽  
Vol 6 (2) ◽  
pp. 205-214
Author(s):  
Honghong Cao ◽  
Wei Qi ◽  
Xudong Gao ◽  
Qiang Wu ◽  
Longlong Tian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document