scholarly journals Overlapping roles for PLK1 and aurora A during meiotic centrosome biogenesis in mouse spermatocytes

EMBO Reports ◽  
2021 ◽  
Vol 22 (12) ◽  
Author(s):  
Stephen R Wellard ◽  
Yujiao Zhang ◽  
Chris Shults ◽  
Xueqi Zhao ◽  
Matthew McKay ◽  
...  
Keyword(s):  
2020 ◽  
Vol 48 (3) ◽  
pp. 1243-1253 ◽  
Author(s):  
Sukriti Kapoor ◽  
Sachin Kotak

Cellular asymmetries are vital for generating cell fate diversity during development and in stem cells. In the newly fertilized Caenorhabditis elegans embryo, centrosomes are responsible for polarity establishment, i.e. anterior–posterior body axis formation. The signal for polarity originates from the centrosomes and is transmitted to the cell cortex, where it disassembles the actomyosin network. This event leads to symmetry breaking and the establishment of distinct domains of evolutionarily conserved PAR proteins. However, the identity of an essential component that localizes to the centrosomes and promotes symmetry breaking was unknown. Recent work has uncovered that the loss of Aurora A kinase (AIR-1 in C. elegans and hereafter referred to as Aurora A) in the one-cell embryo disrupts stereotypical actomyosin-based cortical flows that occur at the time of polarity establishment. This misregulation of actomyosin flow dynamics results in the occurrence of two polarity axes. Notably, the role of Aurora A in ensuring a single polarity axis is independent of its well-established function in centrosome maturation. The mechanism by which Aurora A directs symmetry breaking is likely through direct regulation of Rho-dependent contractility. In this mini-review, we will discuss the unconventional role of Aurora A kinase in polarity establishment in C. elegans embryos and propose a refined model of centrosome-dependent symmetry breaking.


2004 ◽  
Vol 171 (4S) ◽  
pp. 258-259
Author(s):  
Noriyoshi Tanaka ◽  
Subrata Sen ◽  
Bogdan A. Czerniak ◽  
H. Barton Grossman
Keyword(s):  
Aurora A ◽  

Sign in / Sign up

Export Citation Format

Share Document