scholarly journals Suppression of Chatter in High Speed Milling Machine Using Spindle Speed Variation Method with Acoustic Feedback PID Controller

2019 ◽  
pp. 21-26
Author(s):  
Madan Varmma Suparmaniam ◽  
◽  
Ahmad Razlan Yusoff
2011 ◽  
Vol 15 (2) ◽  
pp. 153-171 ◽  
Author(s):  
Sébastien Seguy ◽  
Tamás Insperger ◽  
Lionel Arnaud ◽  
Gilles Dessein ◽  
Grégoire Peigné

2009 ◽  
Vol 48 (9-12) ◽  
pp. 883-895 ◽  
Author(s):  
Sébastien Seguy ◽  
Tamás Insperger ◽  
Lionel Arnaud ◽  
Gilles Dessein ◽  
Grégoire Peigné

2010 ◽  
Vol 112 ◽  
pp. 179-186 ◽  
Author(s):  
Sébastien Seguy ◽  
Gilles Dessein ◽  
Lionel Arnaud ◽  
Tamás Insperger

High-speed milling operations are often limited by regenerative vibrations. The aim of this paper is to analyze the effect of spindle speed variation on machine tool chatter in high-speed milling. The stability analysis of triangular and sinusoidal shape variations is made numerically with the semi-discretization method. Parametric studies show also the influence of the frequency and amplitude variation parameters. This modeling is validated experimentally by variable spindle speed cutting tests with a triangular shape. Stable and unstable tests are analyzed in term of amplitude vibration and surface roughness degradation. This work reveals that stability must be considered at period variation scale. It is also shown that spindle speed variation can be efficiently used to suppress chatter in the flip lobe area.


Author(s):  
Hongji Zhang ◽  
Yuanyuan Ge ◽  
Hong Tang ◽  
Yaoyao Shi ◽  
Zengsheng Li

Within the scope of high speed milling process parameters, analyzed and discussed the effects of spindle speed, feed rate, milling depth and milling width on milling forces in the process of high speed milling of AM50A magnesium alloy. At the same time, the influence of milling parameters on the surface roughness of AM50A magnesium alloy has been revealed by means of the measurement of surface roughness and surface micro topography. High speed milling experiments of AM50A magnesium alloy were carried out by factorial design. Form the analysis of experimental results, The milling parameters, which have significant influence on milling force in high speed milling of AM50A magnesium alloy, are milling depth, milling width and feed speed, and the nonlinear characteristics of milling force and milling parameters. The milling force decreases with the increase of spindle in the given mill parameters. For the effects of milling parameters on surface quality of the performance, in the milling depth and feeding speed under certain conditions with the spindle speed increases the surface quality of AM50A magnesium alloy becomes better with the feed speed increases the surface quality becomes poor. When the spindle speed is greater than 12000r/min, the milling depth is less than 0.2mm, and the feed speed is less than 400mm/min, the milling surface quality can be obtained easily.


Sign in / Sign up

Export Citation Format

Share Document