tool life
Recently Published Documents


TOTAL DOCUMENTS

1519
(FIVE YEARS 296)

H-INDEX

53
(FIVE YEARS 6)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ahsana Aqilah Ahmad ◽  
Jaharah A. Ghani ◽  
Che Hassan Che Haron

Purpose The purpose of this paper is to study the cutting performance of high-speed regime end milling of AISI 4340 by investigating the tool life and wear mechanism of steel using the minimum quantity lubrication (MQL) technique to deliver the cutting fluid. Design/methodology/approach The experiments were designed using Taguchi L9 orthogonal array with the parameters chosen: cutting speed (between 300 and 400 m/min), feed rate (between 0.15 and 0.3 mm/tooth), axial depth of cut (between 0.5 and 0.7 mm) and radial depth of cut (between 0.3 and 0.7 mm). Toolmaker microscope, optical microscope and Hitachi SU3500 Variable Pressure Scanning Electron Microscope used to measure tool wear progression and wear mechanism. Findings Cutting speed 65.36%, radial depth of cut 24.06% and feed rate 6.28% are the cutting parameters that contribute the most to the rate of tool life. The study of the tool wear mechanism revealed that the oxide layer was observed during lower and high cutting speeds. The former provides a cushion of the protective layer while later reduce the surface hardness of the coated tool Originality/value A high-speed regime is usually carried out in dry conditions which can shorten the tool life and accelerate the tool wear. Thus, this research is important as it investigates how the use of MQL and cutting parameters can prolong the usage of tool life and at the same time to achieve a sustainable manufacturing process.


JOM ◽  
2022 ◽  
Author(s):  
Ryan M. Khawarizmi ◽  
Jiawei Lu ◽  
Dinh S. Nguyen ◽  
Thomas R. Bieler ◽  
Patrick Kwon

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 91
Author(s):  
Shafahat Ali ◽  
Said Abdallah ◽  
Salman Pervaiz

The cutting tool heats up during the cutting of high-performance super alloys and it negatively affects the life of the cutting tool. Improved tool life can enhance both the machinability and sustainability of the cutting process. To improve the tool life preferably cutting fluids are utilized. However, the majority of cutting fluids are non-biodegradable in nature and pose harmful threats to the environment. It has been established in the metal cutting literature that introducing microgrooves at the cutting tool rake face can significantly reduce the coefficient of friction (COF). Reduction in the COF promotes anti-adhesive behavior that improves the tool life. The current study numerically investigates the orthogonal cutting process of AISI 630 Stainless Steel using different micro grooved cutting tools. Results of the numerical simulations point to the positive influence of micro grooves on tool life. The results of the main effects found that the cutting temperature was decreased by approximately 10% and 7% with rectangular and triangular micro grooved tools, respectively. Over machining performance indicated that rectangular micro groove tools provided comparatively better performance.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 377
Author(s):  
Yasser Zedan ◽  
Agnes M. Samuel ◽  
Herbert W. Doty ◽  
Victor Songmene ◽  
Fawzy H. Samuel

This study was undertaken to emphasize the influence of Sn and Bi addition on the machinability of Sr-modified, grain-refined, and heat-treated Al–Si B319 and 396 alloys. Drilling and tapping tests were conducted to examine the cutting forces, tool life, tool wear, built-up edge evolution, and chip shape. Microstructures were examined using optical and electron microscopy. Drilling test results show that the B319.2 alloy with 0.15%Sn yields the longest drill life, i.e., twice that of the B319.2 alloy containing 0.5%Bi, and one-and-a-half times that of the B319.2 alloy containing 0.15%Sn + 0.5%Bi. The presence of 0.5%Bi in the B319.2 alloy causes a deterioration of drill life (cf., 1101 holes with 2100 holes drilled in the B319.2 alloy containing 0.15%Sn). The α-Fe phase in the 396 alloy produces the highest number of holes drilled compared with alloys containing sludge or β-Fe. The presence of sludge decreases the drill life by 50%. Built-up edge (BUE) measurements and optical photographs show little change in the BUE width for different numbers of holes except for the B319.2 alloy containing 0.5%Bi, which shows a slightly lower width (0.166 mm) compared with that containing 0.15% Sn (0.184 mm) or 0.15%Sn + 0.5%Bi (0.170 mm).


2021 ◽  
Vol 2144 (1) ◽  
pp. 012025
Author(s):  
I V Blinkov ◽  
A P Demirov ◽  
D S Belov ◽  
A V Chernogor

Abstract The paper presents results of life tests in machining titanium alloy with cutting carbide tool with Ti-Mo-Al-Ni-Si-N, (Ti, Al) N coatings and without it. Shown, that tool life with first coatings is 1.8 and 3.6 times higher than tool with second coatings and simple carbide tool,respectively.


2021 ◽  
Author(s):  
Zoltán Pálmai ◽  
János Kundrák ◽  
Csaba Felhő

Abstract Production technology planning requires information on tool life T and its relation to cutting speed v. As the Taylor formula often cannot be linearized on an lg-lg scale, a general tool life function has been developed for describing a v-T function with a convex-concave part. Using catastrophe theory, an analogy is established between the general tool life function and the cusp catastrophe, allowing topological mapping of the general v-T function. Results were verified by machinability tests in the turning of C35 and C60 conventional and specially deoxidized C-steels during steelmaking. It was found that in the convex-concave section of this function, 2–3 cutting speeds can be selected for a given tool life, which is advantageous for harmonizing tool changes in multi-operation technology.


Author(s):  
Boki Dugo Bedada ◽  
Guteta Kabeta Woyesssa ◽  
Moera Gutu Jiru ◽  
Besufekad Negash Fetene ◽  
Tekle Gemechu

In this study, the experiment was conducted to investigate the advantage of dry machining over wet machining during turning of AISI 1020 steel using cemented carbide tool on a CNC lathe machine. Surface roughness and cutting temperature were measured by VOGEL surface roughness tester and infrared thermometer respectively. The experiments were conducted based on Taguchi L9 orthogonal array design. Surface roughness, cutting temperature, tool life, and machining cost were analyzed graphically. The average surface roughness and cutting temperature achieved with wet machining was 2.01 μm and 26.540C, which was 17.41% and 44.86% respectively, lower than dry machining. The high cutting temperature in dry turning result in short tool life, which was 41.15% shorter than wet turning. The machining cost of wet turning was about 56% greater than the cost of dry turning. The cost of coolant in wet turning is 42.88% greater than that of the cutting tools. The highest cost was shared by tool cost, which was 81.33% of the total cost for dry turning, while 70.00% of the total cost was shared by coolant cost for wet turning. Results revealed that dry turning is more economical than wet turning.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1916
Author(s):  
Antonio Díaz-Álvarez ◽  
José Díaz-Álvarez ◽  
José Luis Cantero ◽  
Mª Henar Miguélez

Despite the interest of industry in nickel-based superalloys and its main features (high temperatures resistance, hardness, low thermal conductivity, among others), even today they are still materials that are difficult to cut. Cutting tools withstand both high pressures and temperatures highly localized at the cutting area because of the elevated work hardening of the alloy and the problems for the cutting fluid to access the region, with the consequent strong tool wear. The use of cutting fluids at high pressures improves coolant access and heat removal. This paper analyzed the machining of Haynes 282 alloy by means of coated carbide tools under high-pressure cutting fluids at finishing conditions. Tests were developed at different cutting speeds and feeds quantifying the machining forces, surface roughness, tool wear, and tool life. Values of 45.9 min and Ra between 2 µm and 1 µm were obtained in this study for tool life and roughness, respectively, for the combination of cutting speed 50 m/min and feed 0.1 mm/rev. Likewise, a comparative analysis is included with the results obtained in previous works developed by the authors relating to the finishing turning of Haynes 282 and Inconel 718 under conventional pressure cooling. The comparative analysis with Inconel 718 is included in the study due to its importance within the nickel base superalloys being widely used in industry and widely analyzed in scientific literature.


Sign in / Sign up

Export Citation Format

Share Document