Calcium-binding proteins and insulin release

1987 ◽  
Vol 116 (2) ◽  
pp. 241-246 ◽  
Author(s):  
Yodphat Krausz ◽  
Ludmilla Eylon ◽  
Erol Cerasi

Abstract. Calcium and cAMP are interdependent regulators of glucose-induced insulin release. In the present study we investigated the importance of cAMP and calcium-binding proteins for biphasic insulin secretion by assessing the effects of two phenothiazines known to block such proteins, trifluoroperazine (TFP) and promethazine (PMZ). In isolated rat islets, during 60-min incubations with 16.7 mmol/l glucose both agents inhibited the insulin response with ID50 values of 15 μmol/l for TFP and 5 μmol/l for PMZ. Both agents decreased the maximal insulin response without gross changes in the islet sensitivity to glucose. TFP (15 μmol/l), whereas inducing 50% inhibition of second-phase insulin release, totally suppressed the cAMP response to glucose and the accompanying first-phase insulin secretion (5-min incubations); these effects of TFP could be partially reversed by isobutyl methylxanthine (IBMX). In contrast, 5 μmol/l PMZ, which produced 60% inhibition of second-phase insulin release, had no effect on first-phase insulin and cAMP responses to glucose. Furthermore, IBMX did not modify the inhibitory effect of PMZ on second-phase insulin secretion. The following is concluded: 1. TFP acts preferentially on first-phase insulin release and inhibits cAMP formation; this suggests that calmodulin plays a major role in mediating the initial glucose effect on secretion via stimulation of cAMP. 2. The islet probably contains calcium-sensitive proteins other than calmodulin, since the low concentrations of PMZ shown to inhibit second-phase insulin release lack effects on calmodulin. Synexin could be such a protein. 3. PMZ had no effect on cAMP generation and first-phase insulin release; it is speculated that synexin-like proteins may mediate the glucose effect on second-phase release by increasing the responsiveness of the islet to calcium/cAMP.

1983 ◽  
Vol 245 (4) ◽  
pp. E391-E400
Author(s):  
R. S. Hill ◽  
W. B. Rhoten

The effect of microtubule-altering agents on the insulin secretory response to glucose during the perinatal period was investigated with an in vitro perifusion system. Rat pancreatic mince from day 17 of gestation (D17G) to day 6 postnatally (D6PN) were perifused for 60 min in basal glucose followed by 45 min with high glucose (3.5 mg/ml) or with high glucose plus 10 mM arginine (D17G). The two phases of insulin secretion in response to high glucose developed in an age-dependent and asynchronous manner. The first phase matured between D17G and D18G, and maturation of the second phase occurred subsequently. Vinblastine (VB) (20 or 100 microM) had a differential effect on the insulin secretory response. VB did not inhibit stimulated insulin release at D17G. This absence of an inhibitory effect of VB at D17G could not be explained by the absence of polymerized tubulin because microtubules were present in the control beta-cells and, in addition, VB treatment resulted in the formation of paracrystalline deposits. Subsequently in development, and with isolated islets of the adult, VB inhibited stimulated insulin release. Heavy water (deuterium oxide, D2O) inhibited stimulated insulin secretion at D17G but blocked completely insulin release from the near-term beta-cell. The inhibition of insulin secretion by D2O was rapidly reversed when water replaced D2O in the perifusion media. The results indicate that the maturation of the second phase of insulin secretion coincides with the ability of the microtubule-altering agents to modify the insulin secretory response. One possible explanation for these findings is that at D17G the microtubules are not coupled physicochemically to other molecules or structures necessary for their role in insulin secretion to be expressed fully.


1987 ◽  
Vol 114 (2) ◽  
pp. 185-189 ◽  
Author(s):  
O. Berglund

ABSTRACT Perfusion of the mouse or rat pancreas with 20 mmol d-glucose/l caused a biphasic release of insulin. The second phase was nearly constant in the mouse but rose in the rat. Repeated pulses of 8, 20 or 30 mmol d-glucose/l did not potentiate subsequent insulin responses in the mouse, whereas repeated pulses of 20 mmol/l did in the rat. When 20 mmol d-glucose/l was introduced through the mesenteric artery or aorta of the mouse, the pattern of insulin release was the same as when it was introduced through the coeliac artery. Thus, insulin secretion in mice differs from that in rats both in not showing an increasing second phase in response to continuous stimulation with glucose and also in not showing successive enhancement in the insulin response to repeated pulses of glucose. J. Endocr. (1987) 114, 185–189


Author(s):  
Sylvie Berthier ◽  
Athan Baillet ◽  
Marie-Helene Paclet ◽  
Philippe Gaudin ◽  
Francoise Morel

Sign in / Sign up

Export Citation Format

Share Document