Lack of glucose-induced priming of insulin release in the perfused mouse pancreas

1987 ◽  
Vol 114 (2) ◽  
pp. 185-189 ◽  
Author(s):  
O. Berglund

ABSTRACT Perfusion of the mouse or rat pancreas with 20 mmol d-glucose/l caused a biphasic release of insulin. The second phase was nearly constant in the mouse but rose in the rat. Repeated pulses of 8, 20 or 30 mmol d-glucose/l did not potentiate subsequent insulin responses in the mouse, whereas repeated pulses of 20 mmol/l did in the rat. When 20 mmol d-glucose/l was introduced through the mesenteric artery or aorta of the mouse, the pattern of insulin release was the same as when it was introduced through the coeliac artery. Thus, insulin secretion in mice differs from that in rats both in not showing an increasing second phase in response to continuous stimulation with glucose and also in not showing successive enhancement in the insulin response to repeated pulses of glucose. J. Endocr. (1987) 114, 185–189

1994 ◽  
Vol 131 (2) ◽  
pp. 201-204 ◽  
Author(s):  
Claes-Göran Östenson ◽  
Bo Ahrén ◽  
Sven Karlsson ◽  
Jens Knudsen ◽  
Suad Efendic

Östenson C-G, Ahrén B, Karlsson S, Knudsen J, Efendic S. Inhibition by rat diazepam-binding inhibitor/ acyl-CoA-binding protein of glucose-induced insulin secretion in the rat. Eur J Endocrinol 1994;131:201–4. ISSN 0804–4643 Diazepam-binding inhibitor (DBI) has been localized immunohistochemically in many organs. In porcine and rat pancreas, DBI is present in non-B-cells of the pancreatic islets. Porcine peptide also has been shown to suppress insulin secretion from rat pancreas in vitro. Recently, acyl-CoA-binding protein (ACBP) was isolated from rat liver and shown to be identical structurally to DBI isolated from rat brain. Using this rat DBI/ACBP, we have studied its effects on glucose-stimulated insulin secretion in the rat, both in vivo and in isolated pancreatic islets. Infusion iv of rDBI/ACBP (25 pmol/min) during glucose stimulation induced a moderate and transient reduction of plasma insulin levels. Moreover, rDBI/ACBP suppressed insulin release from batch-incubated isolated islets, stimulated by 16.7 mmol/l glucose, by 24% at 10 nmol/l (p < 0.05) and by 40% at 100 nmol/l (p < 0.01). The peptide (100 nmol/l) also inhibited the insulin response to glucose (16.7 mmol/l) from perifused rat islets by 31% (p < 0.05), mainly by affecting the acute-phase response. Finally, incubation of isolated islets in the presence of rDBI/ACBP antiserum (diluted 1:100 and 1:300) augmented the insulin response to 16.7 mmol/l glucose (p < 0.05 or even less). We conclude that rDBI/ACBP, administered iv or added to the incubation media, suppresses insulin secretion in the rat but that the effect is moderate despite the high concentration used. It is therefore unlikely that the peptide modulates islet hormone release, acting as a classical hormone via the circulation. However, the occurrence of DBI/ACBP in the islets and the enhancing effect by the rDBI/ACBP antibodies on glucose-stimulated insulin release suggest that the peptide is a local modulator of insulin secretion. C-G Östenson, Department of Endocrinology, Karolinska Hospital, S-171 76 Stockholm, Sweden


1989 ◽  
Vol 262 (2) ◽  
pp. 557-561 ◽  
Author(s):  
W S Zawalich ◽  
K C Zawalich ◽  
H Rasmussen

In response to stimulation by 20 mM-glucose, 15 mM-4-methyl-2-oxopentanoate or 10 mM-glyceraldehyde, isolated perifused rat islets respond with brisk biphasic insulin-secretory responses. The inclusion of 10 mM-LiCl significantly decreased second-phase insulin release in response to all agonists. Inositol, at a concentration (10 mM) which has no effect on secretion in the presence of 2.75 mM-glucose, restored significantly glucose-, 4-methyl-2-oxopentanoate- or glyceraldehyde-induced second-phase release from Li+-treated islets. The addition of the diacylglycerol kinase inhibitor mono-oleoylglycerol, at a concentration (25 microM) which has no stimulatory effect on insulin secretion in the presence of 2.75 mM-glucose, significantly amplified both the first- and second-phase insulin responses to 20 mM-glucose. This amplifying effect of mono-oleoylglycerol was readily reversible and dependent on Ca2+ influx into the beta-cell. Li+ decreased the amplified insulin response to 20 mM-glucose plus mono-oleoylglycerol. Inositol restored release under this condition. These findings suggest that Li+ inhibits release by sequestering inositol into biosynthetically ineffective inositol phosphates. By limiting phosphoinositide resynthesis, the continued hydrolysis of phosphoinositides is diminished. Our results with mono-oleoylglycerol suggest further that diacylglycerol content may play a critically important role in the regulation of both the first and second phases of insulin secretion.


1987 ◽  
Vol 116 (2) ◽  
pp. 241-246 ◽  
Author(s):  
Yodphat Krausz ◽  
Ludmilla Eylon ◽  
Erol Cerasi

Abstract. Calcium and cAMP are interdependent regulators of glucose-induced insulin release. In the present study we investigated the importance of cAMP and calcium-binding proteins for biphasic insulin secretion by assessing the effects of two phenothiazines known to block such proteins, trifluoroperazine (TFP) and promethazine (PMZ). In isolated rat islets, during 60-min incubations with 16.7 mmol/l glucose both agents inhibited the insulin response with ID50 values of 15 μmol/l for TFP and 5 μmol/l for PMZ. Both agents decreased the maximal insulin response without gross changes in the islet sensitivity to glucose. TFP (15 μmol/l), whereas inducing 50% inhibition of second-phase insulin release, totally suppressed the cAMP response to glucose and the accompanying first-phase insulin secretion (5-min incubations); these effects of TFP could be partially reversed by isobutyl methylxanthine (IBMX). In contrast, 5 μmol/l PMZ, which produced 60% inhibition of second-phase insulin release, had no effect on first-phase insulin and cAMP responses to glucose. Furthermore, IBMX did not modify the inhibitory effect of PMZ on second-phase insulin secretion. The following is concluded: 1. TFP acts preferentially on first-phase insulin release and inhibits cAMP formation; this suggests that calmodulin plays a major role in mediating the initial glucose effect on secretion via stimulation of cAMP. 2. The islet probably contains calcium-sensitive proteins other than calmodulin, since the low concentrations of PMZ shown to inhibit second-phase insulin release lack effects on calmodulin. Synexin could be such a protein. 3. PMZ had no effect on cAMP generation and first-phase insulin release; it is speculated that synexin-like proteins may mediate the glucose effect on second-phase release by increasing the responsiveness of the islet to calcium/cAMP.


2007 ◽  
Vol 196 (2) ◽  
pp. 283-290 ◽  
Author(s):  
R A Silvestre ◽  
E M Egido ◽  
R Hernández ◽  
J Marco

Kisspeptins are a family of peptides encoded by the KISS1 gene, which binds to G-protein-coupled receptor (GPR54), an orphan GPR54 related to galanin receptors. Endogenous forms composed of 54, 14, and 13 amino acids have been identified. Kisspeptin and GPR54 mRNAs have been detected in pancreatic B and A cells. Furthermore, kisspeptin-54 has been shown to slightly stimulate the last phase of glucose-induced insulin secretion in mouse and human islets and to inhibit insulin release in MIN6 cells. We have investigated the effect of kisspeptin-13 on insulin, glucagon, and somatostatin secretion. The study was performed in the perfused rat pancreas. Glucose, arginine, carbachol, and exendin-4 were used as secretagogues. Hormones were measured by RIA. Kisspeptin-13 reduced glucose-induced insulin secretion in a dose-dependent manner (IC50=1.2 nM) and inhibited the insulin responses to both carbachol and exendin-4. Kisspeptin-13 blocked arginine-induced insulin secretion without affecting the glucagon or somatostatin responses to this amino acid, thus indicating that kisspeptin-13 influences B cells directly, rather than through an A- or D-cell paracrine effect. The reduction of the insulin response to exendin-4 induced by kisspeptin-13 was also observed in pertussis toxin-treated rats, thus suggesting an inhibition independent of Gi proteins. In view of the potent insulinostatic effect of kisspeptin-13, it is tempting to speculate that kisspeptins may be implicated in the regulation of B-cell secretion.


1995 ◽  
Vol 132 (3) ◽  
pp. 370-376 ◽  
Author(s):  
Yan Hui Ma ◽  
Jian Wang ◽  
Gail G Rodd ◽  
Janice L Bolaffi ◽  
Gerold M Grodsky

Ma YH, Wang J, Rodd GG, Bolaffi JL, Grodsky GM. Differences in insulin secretion between the rat and mouse: role of cAMP. Eur J Endocrinol 1995;132:370–6. ISSN 0804–4643 Although information regarding insulin secretion usually is considered equivalent when generated in the mouse or the rat, it is established that the kinetics of insulin secretion from mouse and rat pancreatic beta cells differ. The mechanisms underlining these differences are not understood. The in vitro perfused pancreas and isolated islets of the mouse or rat were employed in this study to investigate the role of cyclic adenosine monophosphate (cAMP), a major positive modulator of betacell function, as one differentiating signal for the uniquely different insulin release from the beta cells of these commonly used rodents. Glucose-stimulated first-phase insulin release from the perfused pancreas of the rat was higher than the mouse when calculated per gram of pancreas or as fractional secretion, but this phase was identical in the two species when results were adjusted for total body weight. Whether related to insulin content, pancreatic weight or body weight, the rat pancreas responded to glucose with a progressively increasing second-phase insulin release compared to the mouse pancreas, which secreted a flat second-phase of lesser magnitude. Isolated islets from rat and mouse were comparable in insulin content whereas the basal cAMP level of mouse islets was less than half that of the rat. At submaximal stimulation with glucose or glucose + IBMX or forskolin, mouse islets exhibited lower cAMP levels to a given stimulus than the rat. In rat islets cAMP levels increased to approximately 1000 fmol per islet, although insulin secretion maximized by 100–150 fmol. Insulin release at the same 100–150fmol cAMP per mouse islet was one-third that of the rat and secretion had not maximized in mouse islets at 800 fmol. Despite their similar insulin contents, mouse islets consistently secreted less insulin for a given level of cAMP per islet than the rat. The lower capacity of mouse islets to achieve comparable cAMP levels was not the result of increased catabolic rate because the "half-time" disappearance of islet cAMP after a stimulus was similar (~1 min) for both species. It is concluded that, compared to the mouse, beta cells of the rat pancreas elicit a more pronounced secondphase insulin secretion that is due, at least in part, to a greater production of, and sensitivity to, cAMP. Gerold M Grodsky, Metabolic Research Unit, University of California, H5W 1157, Box 0540, 3rd and Parnassus Avenue, San Francisco, CA 94143, USA


1976 ◽  
Vol 231 (6) ◽  
pp. 1830-1839 ◽  
Author(s):  
DL King ◽  
RL Hazelwood

Chicken insulin secretory responses to glucose, glucagon, tolbutamide, and lack of Mg2+ were measured using isolated perfused in situ chicken pancreata. Although elevating perfusate glucose concentration from 100 to 250 mg/100 ml failed to increase insulin release, 500 mg glucose/100 ml provoked a transient 5-min insulin response. Additionally, 700 mg glucose/100 ml resulted in both a transient response and subsequent elevation in secretory rate that continued throughout the following 50-min stimulatory period. Glucagon (500 microgram/ml) and omission of perfusate Mg2+ potentiated glucose-stimulated insulin output by 6 and 25%, respectively. A faster release of insulin (less than 1 min) occurred during tolbutamide infusion (0.13 mg/ml) than with either 500 or 700 mg glucose per 100 ml (2-3 min); however, secretory rates declined to near basal levels within 5 min. Mammalian-like insulin responses to glucose, glucagon, Mg2+ lack, and tolbutamide suggest similarities between avian and mammalian beta-cell insulin secretory mechanisms. Nevertheless, the relatively high chicken insulin release threshold and low insulin output to glucose indicate that chicken pancreata are relatively glucose insensitive.


2007 ◽  
Vol 192 (2) ◽  
pp. 389-394 ◽  
Author(s):  
Nguyen Khanh Hoa ◽  
Åke Norberg ◽  
Rannar Sillard ◽  
Dao Van Phan ◽  
Nguyen Duy Thuan ◽  
...  

We recently showed that phanoside, a gypenoside isolated from the plant Gynostemma pentaphyllum, stimulates insulin secretion from rat pancreatic islets. To study the mechanisms by which phanoside stimulates insulin secretion. Isolated pancreatic islets of normal Wistar (W) rats and spontaneously diabetic Goto-Kakizaki (GK) rats were batch incubated or perifused. At both 3.3 and 16.7 mM glucose, phanoside stimulated insulin secretion several fold in both W and diabetic GK rat islets. In perifusion of W islets, phanoside (75 and 150 μM) dose dependently increased insulin secretion that returned to basal levels when phanoside was omitted. When W rat islets were incubated at 3.3 mM glucose with 150 μM phanoside and 0.25 mM diazoxide to keep K-ATP channels open, insulin secretion was similar to that in islets incubated in 150 μM phanoside alone. At 16.7 mM glucose, phanoside-stimulated insulin secretion was reduced in the presence of 0.25 mM diazoxide (P<0.01). In W islets depolarized by 50 mM KCl and with diazoxide, phanoside stimulated insulin release twofold at 3.3 mM glucose but did not further increase the release at 16.7 mM glucose. When using nimodipine to block L-type Ca2+ channels in B-cells, phanoside-induced insulin secretion was unaffected at 3.3 mM glucose but decreased at 16.7 mM glucose (P<0.01). Pretreatment of islets with pertussis toxin to inhibit exocytotic Ge-protein did not affect insulin response to 150 μM phanoside. Phanoside stimulated insulin secretion from Wand GK rat islets. This effect seems to be exerted distal to K-ATP channels and L-type Ca2+ channels, which is on the exocytotic machinery of the B-cells.


1977 ◽  
Vol 74 (2) ◽  
pp. 243-249 ◽  
Author(s):  
H. SCHATZ ◽  
E. F. PFEIFFER

To study the influence of insulin on its own secretion, collagenase-isolated islets of rat pancreas were prelabelled with [3H]leucine for 2 h. After washing the islets, (pro-)insulin release was stimulated by glucose in the presence or absence of exogenous insulin (up to 2·5 mu./ml). Hormone release was unchanged by the presence of exogenous insulin as judged by determination of both immunoreactive insulin and radioactivity incorporated into the proinsulin and insulin fractions of the medium. No direct feedback mechanism for insulin secretion was apparent from this study.


1983 ◽  
Vol 245 (6) ◽  
pp. E591-E597 ◽  
Author(s):  
D. Giugliano ◽  
P. Di Pinto ◽  
R. Torella ◽  
N. Frascolla ◽  
F. Saccomanno ◽  
...  

These studies were undertaken to evaluate in humans the possible physiological role of prostaglandins of the E series (PGE) in modulating insulin release and to assess whether endogenous PGE synthesis may account for the biphasic pattern of insulin secretion. We used a square-wave glucose stimulation previously determined to give maximal biphasic insulin release. Infusion of lysine acetylsalicylate to block the synthesis of endogenous PGE increased by twofold total insulin response to glucose and also converted insulin release to a multiphasic pattern. The infusion of exogenous PGE1 (0.2 microgram X kg-1 X min-1) or PGE2 (10 micrograms/min) in addition to lysine acetylsalicylate restored the typical biphasic pattern of insulin release and also decreased total insulin release to values similar to those of control studies. Infusion of either PGE1 or PGE2 in the absence of lysine acetylsalicylate reset insulin secretion to a lower level without altering the kinetics of release. On the basis of these results, it is hypothesized that endogenous PGE released in response to glucose stimulation exert an inhibiting effect on insulin release that becomes biphasic in appearance.


1993 ◽  
Vol 265 (1) ◽  
pp. E1-E9 ◽  
Author(s):  
A. Salehi ◽  
I. Lundquist

We investigated the relation between activities of islet glycogenolytic alpha-glucosidehydrolases and insulin secretion induced by glucose and 3-isobutyl-1-methylxanthine (IBMX) by means of suppressing 1) insulin release (Ca2+ deficiency) and 2) islet alpha-glucosidehydrolase activity (selective inhibition by the deoxynojirimycin derivative miglitol). Additionally, the in vivo insulin response to both secretagogues was examined. We observed that, similar to glucose-induced insulin release, islet glycogenolytic hydrolases (acid amyloglucosidase, acid alpha-glucosidase) were highly Ca2+ dependent. Acid phosphatase, N-acetyl-beta-D-glucosaminidase, or neutral alpha-glucosidase (endoplasmic reticulum) was not influenced by Ca2+ deficiency. In Ca2+ deficiency IBMX-induced insulin release was unaffected and was accompanied by reduced activities of islet alpha-glucosidehydrolases. Miglitol strongly inhibited glucose-induced insulin release concomitant with a marked suppression of islet alpha-glucosidehydrolase activities. Direct addition of miglitol to islet homogenates suppressed acid amyloglucosidase [half-maximal effective concentration (EC50) approximately 10(-6) M] and acid alpha-glucosidase. Acid phosphatase and N-acetyl-beta-D-glucosaminidase were unaffected. The miglitol-induced inhibition of glucose-stimulated insulin release was dose dependent (EC50 approximately 10(-6) M) and displayed a remarkable parallelism with the inhibition curve for acid amyloglucosidase. The in vivo insulin secretory response to glucose was markedly reduced in dystrophic mice (low amyloglucosidase), whereas the response to IBMX was unaffected. In summary, islet glycogenolytic hydrolases are Ca2+ dependent, and acid amyloglucosidase is directly involved in the multifactorial process of glucose-induced insulin release. In contrast the mechanisms of IBMX-stimulated insulin secretion operate independently of these enzymes. The effects of miglitol, a drug currently used in diabetes therapy, deserves further investigation.


Sign in / Sign up

Export Citation Format

Share Document