Indomethacin inhibits the basal and angiotensin II-stimulated mitotic activity of the adrenal cortex in rats

1988 ◽  
Vol 117 (4_Suppl) ◽  
pp. S163 ◽  
Author(s):  
M. W. SZKUDLIŃSKI ◽  
A. K. LEWIŃSKI
Hypertension ◽  
1997 ◽  
Vol 30 (3) ◽  
pp. 563-568 ◽  
Author(s):  
Bruna Gigante ◽  
Speranza Rubattu ◽  
Rosaria Russo ◽  
Antonio Porcellini ◽  
Iolanda Enea ◽  
...  

1975 ◽  
Vol 36 (6) ◽  
pp. 49-56 ◽  
Author(s):  
W Oelkers ◽  
M Schöneshöfer ◽  
G Schultze ◽  
J J Brown ◽  
R Fraser ◽  
...  

1977 ◽  
Vol 40 (4) ◽  
pp. 69-77 ◽  
Author(s):  
W Oelkers ◽  
JJ Brown ◽  
R Fraser ◽  
AF Lever ◽  
JJ Morton ◽  
...  

1974 ◽  
Vol 249 (3) ◽  
pp. 825-834 ◽  
Author(s):  
Hartmut Glossmann ◽  
Albert J. Baukal ◽  
Kevin J. Catt

Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Anastasios Lymperopoulos ◽  
Ashley Bathgate ◽  
Norma C Salazar

Introduction: It is widely accepted nowadays that elevation of serum levels of aldosterone, a mineralocorticoid hormone with toxic effects in several cardiovascular tissues, including the heart and cerebral blood vessels, can significantly raise stroke risk. The success of mineralocorticoid receptor blockers, such as eplerenone, at preventing stroke attacks attests to this. Aldosterone is normally produced and secreted by the adrenal cortex in response to angiotensin II. We recently reported that adrenal βarrestin1 (βarr1) plays a crucial role in the physiological angiotensin II-stimulated aldosterone production in the adrenal cortex, leading to marked elevation of circulating serum aldosterone levels in vivo (Lymperopoulos A. et al., Proc. Natl. Acad. Sci. USA. 2009;106:5825-5830). Hypothesis: Herein, we examined the potential impact of this adrenal βarr1-dependent aldosterone elevation on stroke risk in experimental animals in vivo. Methods: We used the βarr1 knockout (βarr1KO) mouse model, studying it alongside wild type (WT) control mice, and also adult male Sprague-Dawley rats, in which adrenal βarr1 was overexpressed in vivo via adrenal-targeted adenoviral-mediated βarr1 gene transfer. Serum aldosterone was measured by ELISA and blood pressure via telemetry. Results: Serum aldosterone at 7 days post-in vivo gene delivery was markedly elevated in adrenal βarr1-overexpressing rats (536+50 pg/ml), compared to control rats receiving the green fluorescent protein (GFP) adenoviral transgene (235+40 pg/ml, p<0.05, n=5). This translated to a significant increase in mean arterial pressure of the βarr1-overexpressing rats (155+5 mmHg) compared to control GFP-expressing rats (137+8 mmHg, p<0.05, n=5), again at 7 days post-in vivo gene delivery, which was prevented by concurrent eplerenone treatment. In contrast, βarr1KO mice had significantly lower serum aldosterone levels (270+20 pg/ml) compared to WT controls (498+35 pg/ml, p<0.05, n=5), at 4 weeks post-experimental myocardial infarction. Conclusions: Adrenal βarr1 up-regulation can dramatically increase circulating aldosterone levels and systemic blood pressure, thus conferring increased risk for stroke in experimental rodents.


2017 ◽  
Vol 114 (2) ◽  
pp. 233-246 ◽  
Author(s):  
Jiao Lu ◽  
Hong-Wei Wang ◽  
Monir Ahmad ◽  
Marzieh Keshtkar-Jahromi ◽  
Mordecai P Blaustein ◽  
...  

AbstractAimsHigh salt intake markedly enhances hypertension induced by angiotensin II (Ang II). We explored central and peripheral slow-pressor mechanisms which may be activated by Ang II and salt.Methods and resultsIn protocol I, Wistar rats were infused subcutaneously with low-dose Ang II (150 ng/kg/min) and fed regular (0.4%) or high salt (2%) diet for 14 days. In protocol II, Ang II-high salt was combined with intracerebroventricular infusion of mineralocorticoid receptor (MR) blockers (eplerenone, spironolactone), epithelial sodium channel (ENaC) blocker (benzamil), angiotensin II type 1 receptor (AT1R) blocker (losartan) or vehicles. Ang II alone raised mean arterial pressure (MAP) ∼10 mmHg, but Ang II-high salt increased MAP ∼50 mmHg. Ang II-high salt elevated plasma corticosterone, aldosterone and endogenous ouabain but not Ang II alone. Both Ang II alone and Ang II-high salt increased mRNA and protein expression of CYP11B2 (aldosterone synthase gene) in the adrenal cortex but not of CYP11B1 (11-β-hydroxylase gene). In the aorta, Ang II-high salt increased sodium-calcium exchanger-1 (NCX1) protein. The Ang II-high salt induced increase in MAP was largely prevented by central infusion of MR blockers, benzamil or losartan. Central blockades significantly lowered plasma aldosterone and endogenous ouabain and markedly decreased Ang II-high salt induced CYP11B2 mRNA expression in the adrenal cortex and NCX1 protein in the aorta.ConclusionThese results suggest that in Ang II-high salt hypertension, MR-ENaC-AT1R signalling in the brain increases circulating aldosterone and endogenous ouabain, and arterial NCX1. These factors can amplify blood pressure responses to centrally-induced sympatho-excitation and thereby contribute to severe hypertension.


1979 ◽  
Vol 237 (2) ◽  
pp. E158 ◽  
Author(s):  
E Natke ◽  
E Kabela

The effects of secretagogues for aldosterone release were studied on the membrane potential of cells in the adrenal cortex of the cat. Adrenal glands were excised, sliced, and continuously superfused. Membrane potentials were recorded from both zona glomerulosa and zona fasciculata-reticularis. Secretagogues, angiotensin II (1 microgram/ml) and 20 mM KCl, were found to depolarize cells rapidly. Ouabain (10(-5) M) also depolarized the membrane potential although the response was sluggish. Samples of the superfusate were collected and analyzed by radioimmunoassay for their aldosterone and cortisol content. Depolarizing concentrations of angiotensin II, KCl, and ouabain seemed to increase aldosterone release. Cortisol output was more variable. Saralasin blocked the effects of angiotensin II on the membrane potential. These experiments suggest that membrane depolarization plays a role in the stimulus-secretion coupling of mineral corticoids.


Science ◽  
1974 ◽  
Vol 185 (4147) ◽  
pp. 281-283 ◽  
Author(s):  
H. Glossmann ◽  
A. Baukal ◽  
K. J. Catt

Sign in / Sign up

Export Citation Format

Share Document