scholarly journals Local nearrings on finite non-abelian $2$-generated $p$-groups

2020 ◽  
Vol 12 (1) ◽  
pp. 199-207
Author(s):  
I.Yu. Raievska ◽  
M.Yu. Raievska

It is proved that for ${p>2}$ every finite non-metacyclic $2$-generated p-group of nilpotency class $2$ with cyclic commutator subgroup is the additive group of a local nearring and in particular of a nearring with identity. It is also shown that the subgroup of all non-invertible elements of this nearring is of index $p$ in its additive group.

Author(s):  
Doostali Mojdeh ◽  
S. Hassan Hashemi

IfKis an infinite field andG⫅Kis a subgroup of finite index in an additive group, thenK∗=G∗G∗−1whereG∗denotes the set of all invertible elements inGandG∗−1denotes all inverses of elements ofG∗. Similar results hold for various fields, division rings and rings.


2013 ◽  
Vol 61 (1) ◽  
Author(s):  
A. M. Basri ◽  
N. H. Sarmin ◽  
N. M. Mohd Ali ◽  
J. R. Beuerle

In this paper, we develop appropriate programme using Groups, Algorithms and Programming (GAP) software enables performing different computations on various characteristics of all finite nonabelian metacyclic p–groups, p is prime, of nilpotency class 2. Such programme enables to compute structure of the group, order of the group, structure of the center, the number of conjugacy classes, structure of commutator subgroup, abelianization, Whitehead’s universal quadratic functor and other characteristics. In addition, structures of some other groups such as the nonabelian tensor square and various homological functors including Schur multiplier and exterior square can be computed using this programme. Furthermore, by computing the epicenter order or the exterior center order the capability can be determined. In our current article, we only compute the nonabelian tensor square of certain order groups, as an example, and give GAP codes for computing other characteristics and some subgroups.


Author(s):  
W. Dirscherl ◽  
H. Heineken

AbstractWe consider (finite) groups in which every two-generator subgroup has cyclic commutator subgroup. Among other things, these groups are metabelian modulo their hypercentres, and in the corresponding quotient group all subgroups of the commutator subgroup are normal.


1982 ◽  
Vol 39 (4) ◽  
pp. 295-298 ◽  
Author(s):  
Ying Cheng

1995 ◽  
Vol 34 (2) ◽  
pp. 125-129 ◽  
Author(s):  
A. A. Finogenov

Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1147
Author(s):  
Jiao Wang ◽  
Xiuyun Guo

Given a positive integer n, a finite group G is called quasi-core-n if ⟨ x ⟩ / ⟨ x ⟩ G has order at most n for any element x in G, where ⟨ x ⟩ G is the normal core of ⟨ x ⟩ in G. In this paper, we investigate the structure of finite quasi-core-p p-groups. We prove that if the nilpotency class of a quasi-core-p p-group is p + m , then the exponent of its commutator subgroup cannot exceed p m + 1 , where p is an odd prime and m is non-negative. If p = 3 , we prove that every quasi-core-3 3-group has nilpotency class at most 5 and its commutator subgroup is of exponent at most 9. We also show that the Frattini subgroup of a quasi-core-2 2-group is abelian.


1998 ◽  
Vol 189 (1-3) ◽  
pp. 69-78 ◽  
Author(s):  
Edward Dobson ◽  
Heather Gavlas ◽  
Joy Morris ◽  
Dave Witte

1975 ◽  
Vol 20 (2) ◽  
pp. 178-198 ◽  
Author(s):  
R. J. Miech

This paper contains the complete classification of the finite p-groups G where p is an odd prime, G is generated by two elements, and the commutator subgroup of G is cyclic. These groups are a special kind of two-generator metabelian group, a class that has been studied by Szekeres (1965). He determined the defining relations of such groups but, as he noted, a “residual isomorphism problem” remains. The cyclic commutator groups are simple when considered from this first point of view; they have a short, easily derived set of defining relations. However, the isomorphism problem is a bit complicated for the defining relations contain nine parameters and each of these parameters might and can be an invariant of the group.


Sign in / Sign up

Export Citation Format

Share Document