scholarly journals Exact Solutions for Incompressible Viscous Fluid: Basis Decomposition

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
V. Vaskin ◽  
V. Lebedev ◽  
T. Ivanova ◽  
V. Bovin
2011 ◽  
Vol 133 (12) ◽  
Author(s):  
Mustafa Turkyilmazoglu

The present paper is concerned with a class of exact solutions to the steady Navier-Stokes equations for the incompressible Newtonian viscous fluid flow motion due to a porous disk rotating with a constant angular speed about its axis. The recent study (Turkyilmazoglu, 2009, “Exact Solutions for the Incompressible Viscous Fluid of a Porous Rotating Disk Flow,” Int. J. Non-Linear Mech., 44, pp. 352–357) is extended to account for the effects of partial flow slip and temperature jump imposed on the wall. The three-dimensional equations of motion are treated analytically yielding derivation of exact solutions for the flow and temperature fields. Explicit expressions representing the flow properties influenced by the slip as well as a uniform suction and injection are extracted, including the velocity, vorticity and temperature fields, shear stresses, flow and thermal layer thicknesses, and Nusselt number. The effects of variation in the slip parameters are better visualized from the formulae obtained.


2022 ◽  
Vol 2022 ◽  
pp. 1-20
Author(s):  
Ndolane Sene

In this paper, we consider a natural convection flow of an incompressible viscous fluid subject to Newtonian heating and constant mass diffusion. The proposed model has been described by the Caputo fractional operator. The used derivative is compatible with physical initial and boundaries conditions. The exact analytical solutions of the proposed model have been provided using the Laplace transform method. The obtained solutions are expressed using some special functions as the Gaussian error function, Mittag–Leffler function, Wright function, and G -function. The influences of the order of the fractional operator, parameters used in modeling the considered fluid, Nusselt number, and Sherwood number have been analyzed and discussed. The physical interpretations of the influences of the parameters of our fluid model have been presented and analyzed as well. We use the graphical representations of the exact solutions of the model to support the findings of the paper.


2013 ◽  
Vol 38 ◽  
pp. 61-73
Author(s):  
MA Haque

In this paper laminar flow of incompressible viscous fluid has been considered. Here two numerical methods for solving boundary layer equation have been discussed; (i) Keller Box scheme, (ii) Shooting Method. In Shooting Method, the boundary value problem has been converted into an equivalent initial value problem. Finally the Runge-Kutta method is used to solve the initial value problem. DOI: http://dx.doi.org/10.3329/rujs.v38i0.16549 Rajshahi University J. of Sci. 38, 61-73 (2010)


Sign in / Sign up

Export Citation Format

Share Document