Žemės stebėjimas iš kosmoso

2021 ◽  
Author(s):  
Justinas Kilpys ◽  
Laurynas Jukna ◽  
Edvinas Stonevičius ◽  
Rasa Šimanauskienė ◽  
Linas Bevainis

Title in English: Earth Observations from Space. There are more than 150 environmental satellites orbiting the Earth, and they are constantly monitoring its surface and the processes happening on it. This textbook offers an introduction to the physical concepts of satellite observations, describes how sensor data is transformed into information about the Earth’s surface and how it can be applied. The scientific background of satellite remote sensing is illustrated using examples from applications in agriculture, forestry, environmental monitoring, disaster risk management, and many other areas. Book provides insight into how satellite remote sensing is used to explore and monitor natural and anthropocentric processes on the Earth and serves as introduction to the practical remote sensing.

2020 ◽  
Vol 3 (2) ◽  
pp. 58-73
Author(s):  
Vijay Bhagat ◽  
Ajaykumar Kada ◽  
Suresh Kumar

Unmanned Aerial System (UAS) is an efficient tool to bridge the gap between high expensive satellite remote sensing, manned aerial surveys, and labors time consuming conventional fieldwork techniques of data collection. UAS can provide spatial data at very fine (up to a few mm) and desirable temporal resolution. Several studies have used vegetation indices (VIs) calculated from UAS based on optical- and MSS-datasets to model the parameters of biophysical units of the Earth surface. They have used different techniques of estimations, predictions and classifications. However, these results vary according to used datasets and techniques and appear very site-specific. These existing approaches aren’t optimal and applicable for all cases and need to be tested according to sensor category and different geophysical environmental conditions for global applications. UAS remote sensing is a challenging and interesting area of research for sustainable land management.


2000 ◽  
Vol 105 (D16) ◽  
pp. 20757-20772 ◽  
Author(s):  
Laura D. Fowler ◽  
Bruce A. Wielicki ◽  
David A. Randall ◽  
Mark D. Branson ◽  
Gary G. Gibson ◽  
...  

Author(s):  
Nathalie Pettorelli

This chapter seeks to provide a quick introduction to satellite remote sensing. It starts with a set of definitions, thereby to explain the differences between Earth observations, remote sensing, and satellite remote sensing. It then goes on to describe how satellite remote sensing works, and what the differences between passive and active sensors are. An introduction to the main sensors currently on board active civilian Earth observation satellites is provided, together with details on their key specifications. The complex nature of satellite data, as well as the tools required to manipulate and analyse them are discussed. The chapter ends with a presentation of the main issues to be aware of when dealing with satellite data, and a look at the coming sensors and datasets that will soon expand opportunities for satellite data to inform environmental management.


Elements ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. 229-234
Author(s):  
Oliver Shorttle ◽  
Natalie R. Hinkel ◽  
Cayman T. Unterborn

The study of planets outside our Solar System may lead to major advances in our understanding of the Earth and may provide insight into the universal set of rules by which planets form and evolve. To achieve these goals requires applying geoscience’s wealth of Earth observations to fill in the blanks left by the necessarily minimal exoplanetary observations. In turn, many of Earth’s one-offs—plate tectonics, surface liquid water, a large moon, and life: long considered as “Which came first?” conundrums for geoscientists—may find resolution in the study of exoplanets that possess only a subset of these phenomena.


Sign in / Sign up

Export Citation Format

Share Document