Toward a “Shinayaka (Flexible and Resilient)” Electric Power and Energy System

Author(s):  
Yoshifumi ZOKA
2012 ◽  
Vol 132 (5) ◽  
pp. 388-391
Author(s):  
Kenji Okubo ◽  
Shoji Nishimura ◽  
Yutaka Goda ◽  
Yoshihiro Baba

Smart Cities ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 1039-1057
Author(s):  
Amro M. Farid ◽  
Asha Viswanath ◽  
Reem Al-Junaibi ◽  
Deema Allan ◽  
Thomas J. T. Van der Van der Wardt

Recently, electric vehicles (EV) have gained much attention as a potential enabling technology to support CO2 emissions reduction targets. Relative to their internal combustion vehicle counterparts, EVs consume less energy per unit distance, and add the benefit of not emitting any carbon dioxide in operation and instead shift their emissions to the existing local fleet of power generation. However, the true success of EVs depends on their successful integration with the supporting infrastructure systems. Building upon the recently published methodology for the same purpose, this paper presents a “systems-of-systems” case study assessing the impacts of EVs on these three systems in the context of Abu Dhabi. For the physical transportation system, a microscopic discrete-time traffic operations simulator is used to predict the kinematic state of the EV fleet over the duration of one day. For the impact on the intelligent transportation system (ITS), the integration of EVs into Abu Dhabi is studied using a multi-domain matrix (MDM) of the Abu Dhabi Department of Transportation ITS. Finally, for the impact on the electric power system, the EV traffic flow patterns from the CMS are used to calculate the timing and magnitude of charging loads. The paper concludes with the need for an intelligent transportation-energy system (ITES) which would coordinate traffic and energy management functionality.


2014 ◽  
Vol 627 ◽  
pp. 357-364 ◽  
Author(s):  
Goran Radovic ◽  
Vera Murgul ◽  
Nikolai Vatin ◽  
Ekaterina Aronova

The article deals with the concept of solar photovoltaic systems use in power supply systems. An analysis of local solar resources potential has been carried out, and optimal orientation points of radiant heat absorbing photovoltaic panels have been chosen to achieve maximum energy performance. Simulation of electric power systems having different configurations has been implemented using the software program Homer. It has been stated that a combination of solar and diesel energy systems is considered to be an optimal solution under the weather conditions of Montenegro. The systems working together make it possible to reduce maintenance costs significantly and adjust capacity generation schedule with due account for energy consumption features to a maximum extent. This allows generating electric power at less cost and results in a more reliable and continuous power supply without failures for a consumer chosen.


Sign in / Sign up

Export Citation Format

Share Document